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ABSTRACT 

The subject of this paper is the study of classical EPD equation in 1m variables, which in its full generality 

has been investigated extensively. We consider the equation  
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Where  and ik   are real or complex parameters and that 1, 3. 5, .k      We construct general solutions in 

an explicit form expressed by the Appell and Lauricella hypergeometric functions of 1m  variables. 

Furthermore, the properties of each constructed solution are investigated. 
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INTRODUCTION 
 
Euler-Poisson- Darboux Equation appears in various 
fields of mathematics and physics, such as theory of 
surfaces (Darboux, 1972), the propagation of sound 
(Copson, 1975), the colliding gravitational fields (Hauser 
and Ernest, 1989) etc. The equation 
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Subject to the initial conditions 
 

( ,0) ( ),   ( ,0) 0tu x f x u x 
    

 (1.2) 

Was studied by Appell and Kampé (1926) in which 

1 2( , , , ).mx x x x  He determined the solution and 

investigated the Huygen’s principle for (1.1)-(1.2). For

0i  for every i  (1.1) reduces to EPD which has been 

investigated extensively, since the appearance of 
Weinstein (1952). The author Seilkhanova and Hasanov 
(2015) constructed solutions of EPD in two dimensions in 
an explicit form expressed by Lauricella hypergeometric 
functions of three variables. 
 
 
SOLUTIONS IN THE APPELL HYPERGEOMETRIC 
FORM 
 
We                    consider               the                case     

(1.1)      when      0,  2, 3, , .i i m      Equation 

(1.1)    then     reduces     to      the     EPD          equation 
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Figure 1. Geometry of the solution of Cauchy’s problem. 
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This reduces to  
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Further, let 
2 2,X Y    then Equation (2.2) 

becomes  
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Where 2k N . 

We note that 2 2( ) ( )
k k

u a a 
 

    solves Equation 

(2.3), where a  is a parameter. Let us now confine our 

attention to the half plane lying under the line    

(Figure 1) Take ,  with the restrictions  
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We note that the adjoint of Equation (2.2) is given by  
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Whose  solution (Wanjala et al., 2012)    is   given  by  
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Where  is an arbitrary analytic function v is called the 

Riemann Greens function of (2.3). Taking ( ) 0a  for 

,a    we obtain a two parameter family of solutions 
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To determine the arbitrary function ( ),a we use the 

following definitions, in regard to the first integral of (2.6): 
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By use of Abel integral equation 
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From the second Equation of (2.7) we obtain 
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With the substitution  
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In the first and second integrals of (2.6), respectively we 
obtain 
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 Since 
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 the Equation (2.10) 

becomes  
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1F Being the Appell hypergeometric series defined for

| | 1,  | | 1;x y  and ( )nq  is the Pochhammer symbol 

representing the rising factorial: 
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RECURRENCERELATIONSOF APPELL’S 
HYPERGEOMETRIC FUNCTIONS 
 
Appell hypergeometric function can be written in two 

forms, namely: 1( , , , ; , )F x y    and

2 ( , , , , ; , ),F x y     which hold when 

 max | |,| | 1  and | | | | 1,x y x y    respectively. 

Their corresponding integral representations are defined 
by the following 
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using these integral representations, the following 
relations hold. 
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Proof 
 

We let 1 .t s  then the right hand side of (3.1) becomes 
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Proof  

  
With the transformations 
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The proof is immediate for the first two cases. We 
discuss the third case: By substituting (iii) in the right 
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Recursion Formulas For 1 2 and F F  In Terms Of 2 1.F
 

 

The functions 1 ( , y)F x and 2 ( , )F x y satisfy the following 

systems of differential equations: 
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For the first case, we refer to (Vidunas, 2009). In the 
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Theorem 2.4 
 
The functions 
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Satisfy the system of differential 

Equations (4.1). 
 
 
Proof 
 
 
See Bailey (1933) where separation of variables for  
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Via the transformation 
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Solution of (1.1) Where 0, 0 .i i m   
 

 
The author Fox (1959) determined the solution of (1.1)-
(1.2) as  
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in which 1 2 md d d d    and ( , )S x t  is the 

domain of the singular hyperplane 0t   cut out by the 
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Taking the transformation ,iu vx  (1.1) reduces to an 

equation of the form 
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We discuss the particular case of Equation (5.2) when 

3,m  which gives a generic solution of it. Let 
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With 3,m   Equation (5.2) becomes 
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Equation (5.3) holds true when 0.A B C D    thus 

the EPD Equation (5.2) reduces to a system of Lauricella 
hypergeometric equations; 

0,  0,  0,  and 0.A B C D    the author Appell and 

Kampé (1926) considered the general case 
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Where he found 2n
 particular solutions of this system. All 

of them are expressed by Lauricella hypergeometric 

function AF , whose integral representation is given by 
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The series representation of AF defined by Appell and 
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PROPERTIES OF LAURICELLAHYPEGEOMETRIC 
FUNCTION 
 
Lauricella hypergeometric function satisfies the following 
properties. 
 
Theorem 6.1 
 

The Lauricella hypergeometric function AF  satisfies 
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Where ( ) 0,  ( ) 0,   1,2, , .;i j jR R j m     
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Proof 
 
In the proof of  this  Theorem,  we  apply  the   arguments 



 
 

 
 
 
 
suggested by Minjie (2013)

 
Hassanov and Srivastava 
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Substituting the right hand side of Equation (6.2) into 
(6.1) we obtain 
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Theorem 6.2 
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Corollary 6.1 
 
 

For 1 2 mx x x x     we have that 
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Also, if 1 2 1,mx x x     then 
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Theorem 6.3 
 

The following relation for AF holds: 
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Proof 
 

From the definition of ,AF
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The right hand side of (6.5) becomes  
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This ends the proof. 



 
 

 
  
 
  
REMARK 
  
We observe from the proof of the above theorem that the 
Lauricella multivariable hypergeometric function can be 
decomposed into the products of the ordinary Gauss 
hypergeometric functions using the relation connecting 
the Pochhammer symbol 

1 2 1 2 1 1 2 1( ) ( ) ( ) .
r r rm m m m m m r mm m m  

          
 

To this far, we have shown in general that the Riemann 
function of the adjoint Equation of (2.1) is given in terms 
of the Appell Hypergeometric function. Also we can 
comfortably draw the conclusion that since the solution of 
the generalized EPD Equation (1.1) is in terms of the 
Lauricella hypergeometric equation, then it is self adjoint. 
 
 
Conclusion 
 
We conclude this paper with a theorem:  
 
Theorem 6.4 
 
The solution of the problem (1.1) subject to the initial 
conditions (1.2) is given by  
 
 

                    

    

1

2

, ,

r s r s

y

x

r r s s u p v p x x u x v x y y u y v y

P u v ds Q u v dx

        

 
 

Where    ,r s r sx x x y y y     

    

    

1 1
, ,

2 2

1 1
, ,

2 2

s s

r r

P u v r s v u u v N uv

Q u v r s v u u v N uv

 
       

 

 
       

   
 
We have taken recourse of green’s theorem in the plane 
to write this solution where v is the Riemann function 

obtained in Equation (2.11) for the special case (2.1) and 

v  is the Lauricella Hypergeometric equation AF  for the 

general case Equation (2.1). It is not hard to show that 
this solution satisfies the given equation with the 
corresponding initial conditions. 
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