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ABSTRACT
The subject of this paper is the study of classical EPD equation in m+1variables, which in its full generality
has been investigated extensively. We consider the equation
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Wherek and A are real or complex parameters and that K #—-1,-3.-5,--- . We construct general solutions in

an explicit form expressed by the Appell and Lauricella hypergeometric functions of m+1 variables.
Furthermore, the properties of each constructed solution are investigated.
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INTRODUCTION

Euler-Poisson- Darboux Equation appears in various
fields of mathematics and physics, such as theory of
surfaces (Darboux, 1972), the propagation of sound
(Copson, 1975), the colliding gravitational fields (Hauser
and Ernest, 1989) etc. The equation
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Subject to the initial conditions

u(x,0) = f(x), u(x,00=0 (1.2
Was studied by Appell and Kampé (1926) in which
X = (X, Xpyreeeee ,X,)- He determined the solution and

investigated the Huygen’s principle for (1.1)-(1.2). For
A =0for every i (1.1) reduces to EPD which has been

investigated extensively, since the appearance of
Weinstein (1952). The author Seilkhanova and Hasanov
(2015) constructed solutions of EPD in two dimensions in
an explicit form expressed by Lauricella hypergeometric
functions of three variables.

SOLUTIONS IN THE APPELL HYPERGEOMETRIC
FORM

We consider the case
(1.1) when A4 =0,1= 2,3;---- m Equation
(1.1) then reduces to the EPD equation
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Figure 1. Geometry of the solution of Cauchy’s problem.
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This reduces to

N
Uy +m(uX +Uy ) - (uy —u,)=0 (2.2)

X-=Y

m 2
Where X =r+t, Y =r-t, r:[ZXfJ
i=1

Further, let &=X?, 7n=Y? then Equation (2.2)
becomes

k
o°u 2 (au 8uj
- ———1=0 (23
oéon (E—-n)\o& on
Wherek = 2N .
-k -k

We note that u=(£—a)2 (n—a)2 solves Equation
(2.3), where a is a parameter. Let us now confine our
attention to the half plane lying under the line & =7

(Figure 1) Take & > 17, with the restrictions

E>E>0, n<i, g =1 (0<A<1) (2.4)

We note that the adjoint of Equation (2.2) is given by

-1
(v, -v,)=0 (2.5)

A
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én

Whose solution (Wanjala et al., 2012) is given by

¢
v=[g@)¢-a)"(@a-n) "da

Where ¢ is an arbitrary analytic function Vvis called the
Riemann Greens function of (2.3). Taking ¢(a) =0 for

n<ac< é?, we obtain a two parameter family of solutions

¢

V= ](/5(&)(45 ~a)" (a-n)"da+ [g(a)(¢-a)“(a-n) ' da 2.6)

To determine the arbitrary function ¢(a), we use the
following definitions, in regard to the first integral of (2.6):

p(t)=G(t)=0, 0<t<é&
pO=gOE-7) (- (E-8) @
Gt)=t-&,t>&

By use of Abel integral equation



u(é)

f(x)= j R 0<A4<1, whose solution is

sin 74 d o dt, We write

Hix) = 7 dxd (x—t)

j PO g4t _G(r, &)

2 (E-1)°
Hence
p(a):smﬂﬂ“je( )t = sm;lej “dt_smﬂﬂ“(g 0y
T T
From the second Equation of (2.7) we obtain
sa)= SN @) @) (€)' .

A &-¢&
With the substitution
a=¢+t(&—&), a=q7+t(n—7)

In the first and second integrals of (2.6), respectively we
obtain

Now if we letX = in the first integral

£-¢
7-¢

and X = Y =

Q:l dl

i/ 71 in the second integral, then
]

.9) reduces to

\f\ﬂ\“;

N

Equation (
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(2.10)

A _ F(1+ /1)1"(1— /1)
sin A r'(2)
becomes

the Equation (2.10)

Since
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Where

Fl(alfblbelC;Xf y)= i (a)m+n(b1)m(b2)n m,,n

Xy,
mnzo  (C),,,,mIn!
F, Being the Appell hypergeometric series defined for
| x[<1, [yl<ZLand (q),

is the Pochhammer symbol

representing the rising factorial:
r'q+n)
(@), = =q(q+2)...... (q+n-1).
I'(q)
RECURRENCERELATIONSOF APPELL’S

HYPERGEOMETRIC FUNCTIONS

Appell hypergeometric function can be written in two
forms, namely: F(a,B,7,0,%Y) and
F,(a,B,7,0,0;X,Y), which hold
max {| x|, y <1} and | x|+]y|<1,

Their corresponding integral representations are defined
by the following

when

respectively.

1

I“lt“llx (L-y)7 3.1)

Wﬂ%5xy

—

<

—
=

Where max {| x|,| y <1}, and

T(6)(p) Hﬂl ”“v%sﬂ“mS
- Ar(y)r(p-7) 00 (L-xt-ys)*

BWﬁ%&ﬂKW=Hmu

(3.2)

Where

|x|+|yl<land R(6) > R(S) >0, R(p) > R(y) >0.
using these integral representations, the following

relations hold.
Theorem 3.1

For R(0) > R(B) >0, R(p) >R(y) >0,

F(a, f.7:0:%,y) = 0-X) " (1-y) 7 (aﬂ%,l%;%?

Where| X |,| Y |<1.



Proof

We let t =1— s.then the right hand side of (3.1) becomes
1

Mjsﬁ—a—la_sy-la-x(1-s))'”(1—y(l—s))”ds (3.3)
Iy 3

Note that 1—x+xs=(1—x)(1—x—51). Hence (3.3)
X_

reduces to

L) (y-a) . 71 S-a-1 a1 - -y
TOf)(l—x)ﬂ(l—y) {s (L-5)*(1-&s)? (L-ns) 7 ds

=(-x)"(A-yY R0 -a.B.1:8:50),

X y
Where § =—— and n = ———.
° x—-1 7 y-1

Theorem 3.2

For R(0) > R(p) >0, R(p) >R(y) >0,

F(@ 6,78, /% Y) = 0-X) “Fy(@.8 - B.7:8, pi— —2)

x-1 x-1
M-V Rl fp-1i6 P )
- y 2 ) 1p 7/1 lply_lvy_l
—a . . —X _y
=(1_X_y) Fz(a,5—,5,p—7,5,p, ’ )
l-x-y 1-x-y

Where| X |+|y|<1.
Proof
With the transformations

i) t=1-t', s=¢/

i.) t=t',s=1-¢"

i) t=1-t',s=1-5

The proof is immediate for the first two cases. We
discuss the third case: By substituting (iii) in the right
hand side of Equation (3.2) we obtain

r)r(p) 11
T(AF(@- Ao lg
T
T(A)(6-Ar(y)(p

/11 ”“15

71
() drdsv
1x+x -5+)8)"
11 r !
1 X- y JJ 0/111 tﬂl )»11 S)/i(l f YS),ads«dt/
00
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X,—y)

= (L-x-y)"
p-7) 1-x-y 1-x-y

F(a.6-B,p-1.6,p,

Recursion Formulas For F, and F, In Terms Of ,F,.

The functions F, (X, y)and F,(X,y) satisfy the following

systené@ of déff_erentba# equations: i
+r W+ﬂm)

oF
M-X)=L-y —-2y— ~(a+ 1y - afF =0
o ooy 6l
)ﬁd 1 2Xy ” ( (a+/}+1)y)§—(a+ﬂ+l)X6—X1—0!ﬂF1:0
O°F,  O°F ok, , OF
a—);§§—wégi+(-%a+ﬂ+Dﬂ;§~ﬂy5f—aﬂﬁ=0
O’°F, O°F ok oF
( _y)ﬁ—xyax—aiﬁ(p—(a+y+1))y52—}/xgz—a7|:z =0

Respectively.
Theorem 4.1

The following pairs of functions:

1 F,(a, B8,7:28,2y; X, 2 —X) and
,,, a a+1 . 1. X
(x=2) F( > _7’ﬁ+§’ﬁ)
4 (1-s)(st* -1
2fﬂﬂ+7 ﬁ7,ﬂ G 0 st )

_ 1 1

and (L-t)*"" 7 F (B + 7—5,7;,B+ E;Stz),wheres
is an arbitrary constant, satisfy the second order ordinary
differential Equations (4.2).

Proof

For the first case, we refer to (Vidunas, 2009). In the
second case of the theorem, we substitute

t
S S% s —

S
And conclude that

st —~(s*-1)(t°-1)
ﬂyZﬂ it Sy

sy ) (4.3)

F(B+y-=



And
+ ]' 1 1
(=) R (B+y- ,y;/f+5;52)2F1(5+7—E,7;ﬂ+5:t2) (4.4)

Satisfy the same second order ordinary differential
equations with respect to t. In this setting

1 1

= B+=i8%)is a

zFl(/B+7_2 5

However, the symmetry between X and Y suggests that
the system of Equations (4.2) for

FB+y-

following (4.3) to a system of differential equations where
the new variables sandt are separated. Using the
substitution

s+1
S ——
s—-1

In (4.3)-(4.4) and considering F, and ,F, solutions of the

same system of differential equations around the point
(t,s) =(0,0), we have

constant  factor.

%,ﬁ,y;Zﬂ,Zy;X,y) can be transformed

. H-st 41-ts
F(f+) ﬂ' b (Les+t-s)" (Lstt-sif

Leset-st)" 1
[ ] [/M O j [/M ,y;ﬂ+§;tzj

(4.5)

1-s

Theorem 2.4

The functions
Fl(a,ﬁ;y,a +ﬂ—y+g; x*, (1 Xz)jAnd

F. (2a,2f;2y —1;X) Satisfy the system of differential
Equations (4.1).

Proof

See Bailey (1933) where separation of variables for

F(a Biy.a+pB—y+LxA-y), yd-X))
Fl(a,ﬂ;;/;x)2F1(a,ﬂ;a+,8—;/+1; y)

Via the transformation
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x Yy

x+y+l xey+l)

aa+l 1
F( af.2p 2 ——:

1
1 E,T;ﬁ+§,y+§;xz,sz=(l+X+y)

Solution of (1.1) Where 4 #0,0<i<m.

The author Fox (1959) determined the solution of (1.1)-
(1.2) as

r(;(ku)j
u(xt, f)=— . j fENV(xL,EE (5.1)
nzr[z(k-mu)jsm)
in which d&=d&dé¢,...... dé, and S(x,t)

domain of the singular hyperplane t =0 cut out by the
characteristic cone with vertex at (X,t) and where

is the

1
Lk ey (kmHD) 1
vt Y2 FA(a,l—a,E(k—m+l),zj,Where

Y is given by the formula
m

Y(x5E) =t" =D (x -&),

i=1

Folog, e i By Pyreenens BVl Ly 7))
= Z 1 H(al,pl)(ﬂl'pl)zlp',
PLoPgeveees P =0 (7’,01 T 0, Tl + pm) i1 o) |
Where
1+,/ /
(@), = AT, AP ,y— km+1

Ma)
Taking the transformation U = VXi , (1.1) reduces to an
equation of the form

We discuss the particular case of Equation (5.2) when
m = 3, which gives a generic solution of it. Let

— ,ﬁ, N —
u= (r ) T W(§ n,p,0), ris the  Lorentz
distance between (X,t) and a  point &,
in the singular plane, given explicitly by



(X, Xy reennnn X ) =D (% = &) (-t
Further,
2 2 2 2 2 2 2 2
r-r r-—r r-—r r-—r
52 1 , 77: 2 1,0: 3 , o= 4
rZ I,.2 r.2 r2

And where
=X +E) +(X = &) et (X, —E ) = (t-1,)%,
=X =&)Y + (X + &) o+ (X, —E ) = (t-1,)%,

m+1 (Xl é:l) (XZ +§z)2 ton + (Xm _fm)2 - (t +t0)2'

With m = 3, Equation (5.2) becomes
3
—4(r2)aﬂ752{é+g+9+2}=0 (5.3)

Where A, B,C and D are given as:

A=E(L-E)w,, - Enpw, - Epw, - Eow,, + (20 - (2 +ﬂ+y+§+§)§)w§

+anw, +apW, +aoW, —(a+ﬂ+y+§+%)aw,

B=n(l-nw,, ~&mw,, -npw,, -now,, + Ew, +(2f - (a+2ﬂ+y+§+§))

+fpw, +ﬁawu+(a+ﬁ+y+6+§)ﬁw,

C=p(l-p)W,, = GoW., ~npW,, = poW,. + /W, + W, +(2y ~(a+ f+ 27 +0+ ))
+§awg+(a+ﬂ+y+§+%)yw,

—pawﬂgwfwg+§nwn+§pwp+(2§—(a+/3+y+25+%)o)wa

D=o(l-o)w -Sow,, -noW,,

+(a+ﬂ+7+§+%)§w.

Equation (5.3) holds true when A= B =C = D =0.thus
the EPD Equation (5.2) reduces to a system of Lauricella
hypergeometric equations;

A=0,B=0, C=0, and D =0.the author Appell and
Kampé (1926) considered the general case

oF, noooF
_2_ Z xk ~(a+hy+Dx 2 -b, Z Xk_A_abjFA:0|
6)( keLke] ‘k j | kL] an
J=12em
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Where he found 2" particular solutions of this system. All
of them are expressed by Lauricella hypergeometric

function F,, whose integral representation is given by

:ﬁB(ﬂi'Vj‘ﬂi)J ...... j uf - u) QST AT A 11 T T
R(B,)>0, R(y, - f;)>0, j=12,.....m.

The series representation of F, defined by Appell and
Kampé (1926) is

Fale, B By s B Vs Varev e Vi X Xgreeen e X))
-3 D Do P 0Ky
NNy =0 (7/)”1 (7/)n2 ------ (}/)nm

Valid for | X, |+ X, | +...... +| x

PROPERTIES OF LAURICELLAHYPEGEOMETRIC
FUNCTION

Lauricella hypergeometric function satisfies the following
properties.

Theorem 6.1

The Lauricella hypergeometric function F, satisfies

m

(6.1)

Proof

In the proof of this Theorem, we apply the arguments



suggested by Minjie (2013) Hassanov and Srivastava
(2006). Here, we note that

- U)o ) (0 )
(1_X1u1_X2u2_ """ _Xmum)_a: Z (a)n1+n2+ ,,,,, nmM (62)

B ey ﬂ1|n2|nml

Substituting the right hand side of Equation (6.2) into
(6.1) we obtain

BBy By BT Ty T X Yy X5 )
HB Biry-

L.t

® m My \N m“ Un .
IR MJJ ----- [

_nl.ﬂz"""nnm:g 2 n1|n | n |
= i () n B(ﬂj+,]j’}/j_ﬂj)(X1) (z)”z ..... (Xn)ﬂm
wn e BB -B) !

valid for | X, |+ X, | +...... +|x

Theorem 6.2

For R(4) >0, R(y; - B,) >0, j=12,...... ,m;
Fules B By B T P T K KXo )

1 1 ~tya-1 Lo o o (6.3)
:@J.e t 1F1(ﬂ1'71’X1t)1F1(ﬁ2’721X2t) """ 1F1(ﬂm!ymsxmt)
0
Where| X, |+ X, [+......+] X, [<1.
Proof

Recall that ,F (a;b;z) = ZEE;" Tk

The right hand side of (6.3) reduces to

- i (ﬂl)fh(ﬂz)"z """ (ﬂm)”m XIHXSZ """ X:Wm i'lfe CaLsaey 1dt
a0 )y (7)o, covee )y MMM L T (@)
© My M 1

_ Z (ﬂl)nl(ﬁz)nz """ (ﬂm)nm X1 XZ """ X 1 Ieittwwnﬁ" ny 1dt
0y ety =0 (yl)nl(yz)nz """ (7m)n n1!n2! """ n IF((Z)O

Y Myl My
= Z (a)rh+nz+.,,,,,nm (ﬂ1)nl(ﬂz)nz ------ (ﬂm)nm XKl v X

M gl =0

=R (@B Byre - B Vi Ve Vi X Karen X))
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Corollary 6.1

For X, = X, =... =X, = X we have that
G (ﬂl) (ﬂ?)n "'(ﬂm)n anmzirmm"
Fﬂ(a'ﬁ’ﬂ !"'!ﬂm;ylv}/ l'“l:/m;x ’X l"'lX): (a) Hl A, - : - '
o : nl‘nz_z‘:nm:o R (yl)rh(}/z)nz“‘(ym)nm nl!nz!‘“nm!
Also, if X, =X, =...= X, =1, then
- (ﬁl)m(ﬂZ)nz'“(ﬁm)nm 1

FA(alﬁllﬁzv--1ﬂm;}/11}/21---1}/m;lylx-"11:

Z (a)nﬁnz—‘..mm

M1y =0

ARARSARUTANN)

Theorem 6.3

The following relation for F, holds:

Y0 OO T S
B(ﬂw )X
-V (o), [l

ml F((l nl+n+ +nm1’ﬂml}/m' m)
LSS

Jl B(A.7i-B) ninl.n,, '2 (6.4)

Proof

From the definition of F,,

XL O 20 A
= " BB B
ﬂlvﬂzwﬂ”:[] e 5! B(ﬂlny _ﬂj) nl!HZI...nm] ’

where [ [+]X, [ +...+ ] L.
(6.5)

The right hand side of (6.5) becomes

Fo(@ B Byreoos B 7 Ve Tt K X Xg)

- Z ((Z) gt ) m_lB(ﬂl-}-nj,}/j_ﬂ.) lex;zmx;m_ll X
e (ﬂ Vi~ /3) ninlk.n,!

nl,nQ,...nm:O
B(ﬂnnﬂ -H]m’}/nm _ﬂnm) X:]m
3 (@04t ), 8|
nm:O ! B(anm’;/nm _anm) nmI

This ends the proof.



REMARK

We observe from the proof of the above theorem that the
Lauricella multivariable hypergeometric function can be
decomposed into the products of the ordinary Gauss
hypergeometric functions using the relation connecting
the Pochhammer symbol

(05)r711+m2+..‘+mr = (a)rnl+m2+‘..+m,_1 (a + ml + m2 Tt mr—l)mr '

To this far, we have shown in general that the Riemann
function of the adjoint Equation of (2.1) is given in terms
of the Appell Hypergeometric function. Also we can
comfortably draw the conclusion that since the solution of
the generalized EPD Equation (1.1) is in terms of the
Lauricella hypergeometric equation, then it is self adjoint.

Conclusion
We conclude this paper with a theorem:
Theorem 6.4

The solution of the problem (1.1) subject to the initial
conditions (1.2) is given by

—j:{P(u,v)ds+Q(u,v)dx}

Where Y=(Y, —75),72(3_/r _ys)

P(u,v):%(r—s)(vasu :uasv)—(N —%juv,
Q(u,v)zé(r—s)(varu =ua,v)—[N —%)uv,

We have taken recourse of green’s theorem in the plane
to write this solution where Vis the Riemann function
obtained in Equation (2.11) for the special case (2.1) and

V is the Lauricella Hypergeometric equation F, for the

general case Equation (2.1). It is not hard to show that
this solution satisfies the given equation with the
corresponding initial conditions.

REFERENCES

Appell P, Kampé de Fériet MJ (1926). Functions Hypergeometriques et
Hyperspheriques, Gauthier-Villars, Paris.

Bailey WN (1933) .A reducible case of the fourth type of Appell's
hypergeometric functions of two variables. Quart. J. Math. (Oxford),
4: 305-308.

lyaya and Isaac 45

Weinstein A (1952). On the Cauchy problem for the Poisson equation
and the wave equation. C. R. Acad. Sci., 234: 2584-2585.

Fox DW (1959). The solution and Huygens’ Principle for a Singular
Cauchy Problem. J. Math. Mech., 10: 197-219

G Darboux (1972). Lectures on the general theory of surface and
geometric applications of calculus flight Il (Bronx, NY Chelsea)

Copson ET (1975). Partial differential equations, Cambridge University
Press.pp.77-89.

Hauser | Ernest FJ (1989). General Relativity and Gravitation,
Proceedings of the 12" international conference on General Relativity
and Gravitation, University of Colorado at Boulder,USA.

Hassanov A, Srivastava HM (2006). Some decomposition formulas

associated with the Lauricella function FA and other multiple

Hypergeometric Functions. Appl. Math. Lett., 19: 113-121.

Vidunas R (2009). Specialization of Appell's functions to univariate
hypergeometric functions. J. Math. Anal. Appl., 355: 145-163.

Wanjalalyaya CC, Manyonge WA, Esekon J (2012). On singular
Cauchy problem of Euler-Poisson Darboux equation. Pioneer J.
Math. Math. Sci., 5(1): 121-136.

Minjie L (2013). A Class o Extended Hypergeometric Functions and Its
Applications. arXiv:1302.2307.

Seilkhanova RB, Hasanov  AH (2015). Particular solutions of
generalized Euler-Poisson-Darboux equation. Elect. J.Diff. Equat.,
09: 1-10.



