
              

 
©2015 Pearl Research Journals 
 
 
 
 
 

Kantowski-Sacks Interacting Holographic Dark Energy Model 
in Barber’s Self Creation Theory 

 

R.Venkateswarlu1 and J.Satish2* 

 
Accepted 5 September, 2015 

 
1
GITAM School of Intl. Business, GITAM University, Visakhapatnam, 530045, India. 

2
Vignan‘s Institute of Engineering for Women, Visakhapatnam, 530049, India. 

 
 
ABSTRACT  
 
We study the holographic dark energy models with Kantowski-Sachs (KS) space-time in Barber’s second 
self-creation theory of gravitation. The solutions of the field equations are obtained with the help of two 
assumptions viz., (i) power law assumption for the average scale factor and (ii) a relation between two metric 
coefficients. It is observed that, in the KS model, the EoS parameter of dark energy transits from 
quintessence era toward vacuum era. Some properties of physical and kinematical parameters are also 
discussed.    
  
Keywords: Interacting, Holographic, Dark Energy, Self-Creation Theory, PACS: 98.80.ES; 98.80-K. 

 
 
 
 
 
INTRODUCTION 
 
To extend the concept of theory of general relativity, 
Brans and Dicke (1961) have developed a theory which 
includes a long range scalar field interacting equally with 
all forms of matter with the exception of 
electromagnetism. Barber (1982) has proposed two 
continuous self-creation theories by modifying the 
general relativity and Brans and Dicke (BD) theory. The 
Barber‘s first theory is considered to be an alternative to 
BD theory but Brans (1987) has pointed out that the first 
theory severely violates the equivalence principle. The 
second theory is a modification of general relativity to a 
variable G theory and the gravitational coupling of the 
Einstein field equations is allowed to be a variable scalar 
on the space time manifold. It is postulated that this 
scalar couples to the trace of the energy momentum 
tensor. Hence the field equations, in Barber‘s second 
theory, are 
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Where ijR  is the Ricci tensor; ij
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scalar; and ijT  is the energy momentum tensor and. 
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;

;   is the invariant D‘Alembertian and the 

contracted tensor T is the trace of the energy momentum 
tensor described all non-gravitational and non-scalar field 
matter. In this theory the scalar field does not directly 
gravitate, but simply divides the matter tensor and acting 
as a reciprocal gravitational constant. The measurements 
of the deflection of light restrict the value of the coupling 

to
110 . In the limit η→ 0, this theory leads to 

Einstein‘s theory in every respect. The Barber‘s second 
self-creation theory has been extensively discussed by 
Soleng (1987). Reddy (1987), Mohanty et al. (2002) 
Mohanty and Sahu (2006),   Panigrahi   and Sahu (2004),  
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Rathore (2010), Venkateswarlu and Pavan kumar (2006) 
and Venkateswarlu et al. (2008). 
In recent times the occurrence of an accelerated 
expansion of the universe is observed in the literature. 
The most important and striking aspect of particle physics 
cosmology is the origin of the accelerated expansion of 
the universe. It is believed that the theory of dark   energy  
having negative pressure is mostly responsible for this 
situation. Standard cosmology can only explain this 
observational fact if the cosmic fluid in recent past is 
dominated by exotic matter having large negative 
pressure. Further, the observations predict that nearly 
73% of our universe is filled up with that type of 
components like dark energy (DE). The simplest choice 
for the dark energy candidate is the cosmological 
constant ‗Λ‘ and the favored cosmological model which 
fits most of the observational data is the Λ–cold–dark–
matter (ΛCDM) model which represents a vacuum energy 
density having equation of state parameter (EoS)  ω= −1. 
Although the model predicts cosmic acceleration as well 
as a reasonable agreement with observational data, there 
are some upsetting issues related to this model, namely, 
cosmological constant problem (Weinberg, 1989; Carroll, 
2001) (the huge discrepancy between the observed value 
of the cosmological constant and the one predicted in 
quantum field theory), coincidence problem (Copeland et 
al., 2006) (although generically small, but the 
cosmological constant happens to be exactly of the value 
required to become dominant at the present epoch) and, 
recently, it was shown that the CDM model may also 
suffer from the age problem (Yang and Zhang, 2010).  
Due to those problems in the above model, scalar field 
models, namely, quintessence (Caldwell et al., 2002), 
phantom (Hooft,1993), K–essence (Armendariz-Picon et 
al., 2001), Tachyon (Padmanabhan, 2002), Quintom 
(Elizalde et al., 2004) attracted special attention as 
dynamical DE models. In recent years, an interesting 
observation is made to determine the nature of dark 
energy in quantum gravity which is termed as holographic 
dark energy (Bekenstein, 1973; Hooft,1993; 
Bousso,1999; Cohen, 1999; Susskind, 1994). The 
holographic principles say that the entropy of a system 
scales not with its volume but with its surface area Li 

(2004). The holographic dark energy density  and the 

Hubble parameter H are connected by  
 

2H    (3) 
 

Which does not contribute to the present accelerated 
expansion of the Universe. Granda and Olivers (2008) 
proposed another relation between holographic dark 

energy density  and the Hubble parameter H in the 

following form. 
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Where α and β are constants. Sarkar and Mahanta 
(2013) Samanta (2013) Sheykhi and Jamil (2011), 
Gitumani (2014) have studied the holographic dark 
energy models with quintessence. Karami and Fehri 
(2010) has   studied  the   correspondence  between   the 
quintessence, tachyon, K-essence and dilation scalar 
field models with the new holographic dark energy model 
in non-flat FRW model. In 2003, Sahni et al. (2003). 
proposed state finder parameters {r, s} which are defined  
as  
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Where the overhead dot denotes differentiation with 
respect to t. Here ‘a’ is the average scale factor of the 

FRW model and H and q 
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 are the Hubble 

parameter and the deceleration parameter, respectively.  
In fact the parameter ‘r’ forms the next step in the 
hierarchy of the geometrical cosmological parameters 
after H and q. These dimensionless parameters 
characterize the properties of dark energy in a model in 
independent manner. According to Sahni et al. (2003), 
trajectories in the {r, s} plane corresponding to different 
cosmological models demonstrate qualitative different 
behavior, and therefore, the state finder diagnostic 
together with observations may discriminate between 
different DE models. Inspired by the above work, some 
more general geometrical cosmological parameters are 
introduced. In fact, they are obtained from the Taylor 
series expansion of the scale factor. These geometrical 
cosmological parameters are the jerk parameter j (same 
as r), snap parameter s (different from the above defined 
s parameter by Sahni et al. (2003), lerk parameter l and 
m parameter. The study of the above four parameters for 
a particular dark energy model together with the 
deceleration parameter is known as the Cosmography of 
the model. In this connection, one may see the evolution 
equations for the modified and the interacting modified 
holographic Ricci dark energy and their state finder 
diagnoses (Mathew et al., 2013). In the present work, we 
study the Kantowski-Sachs space-time in Barber‘s 
second self-creation theory of gravitation with holographic 
dark energy. We study the cosmographic analysis for the 
interacting DE model for the above three choices of the 
interaction term. Some physical and geometrical 
properties of the model are studied. Conclusions are 
given at the end. 
 
 
KANTOWSKI-SACHS METRIC AND FIELD 
EQUATIONS  

 
We consider the   Kantowski-Sachs metric   in   the   form  
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(5) 
 
Where A and B are functions of time only. Kantowski-
Sachs class of  metric  represents    homogeneous     but  
anisotropic ally expanding (contracting) cosmologies and 
provides models where the effect of anisotropy can be 
estimated and compared with FRW class of cosmologies. 
The energy momentum tensor for matter and holographic 
dark energy are defined as    
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Where ρm are pressure and energy density of matter, ρh is 
holographic dark energy and Ph is pressure of the 
holographic dark energy Also, the energy conservation 
equation is  
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The velocity 
iu  describes the 4 velocity which has 

components (1, 0, 0, 0) for a cloud of particles. The 
energy momentum tensor for matter and the holographic 
dark energy is given by 
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Here we are dealing with an anisotropic holographic dark 
energy. We can parameterize Equation (4) as  
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For the line element (5) the field Equations (6) and (7) 
leads to the following system of equations: 
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Using barotropic equation of state hhP  , we may 

write the continuity Equation (3) of the matter and dark 
energy as  
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Here we are considering the minimally increasing 
interacting matter and holographic dark energy 
components. Hence both components conserve 
separately, so that from Akarsu and Kilinc (2010) we 
have 
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The following are the physical and geometrical 
parameters to be solved in Barber‘s self creation field 
equations for the space time given by Equation (1).The 

expansion scalar θ for this metric is
B

B

A

A 
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Defining the directional Hubble parameters along the axis 

of symmetry are 
A

A
H


1  and 

B

B
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
2 . The scalar 

expansion can be expressed in terms of the directional 

Hubble parameters as  21 2HH  .The shear scalar 

for the plane symmetric metric defined in (1) is expressed 
as  
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The shear scalar may be taken to be proportional to the 
expansion scalar which envisages a linear relationship 
between the directional Hubble parameters H1 and H2 as 
H1 = m H2. This assumption leads to an anisotropic 
relation between the    scale    factors    A     and    B  as   
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Where m is an arbitrary positive constant. If m = 1, the 
model becomes isotropic model otherwise the model 
becomes anisotropic model. The mean Hubble parameter 
can now be expressed as 
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SOLUTION AND THE MODEL 
 
Now Equations (6-9) are a system of four independent 
equations in six unknowns. Firstly, we assume a constant 
deceleration parameter which favours a power law form 
for average scale factor. Moreover, it has become a usual 
practice in the literature to use a power law to address 
different issues in cosmology in the framework of scalar 
tensor theories. The scale factor of the universe can be 
fixed from the behaviour of the deceleration parameter or 
the assumed dynamics of the late time accelerated 
universe.  
The average scale factor a (t) of the Kantowski-Sachs 
space time is assumed as  
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Using Equations (15 and 17), the solution of the field 
equations can be expressed as   
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And the scalar field is given by   
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Where )2)(1(4)2(6 22  mmnmnX . Now the 

corresponding    KS    model    in   Barber    second     
self-creation     theory     can      be           written         as 
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The model given by Equation (24) possess singularity at 

m=-2. The following are the
 physical and geometrical 

parameters for the model: 

(i) -The expansion scalar θ for this metric: 
t

n3
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(ii) The mean Hubble parameter:  
t
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(iii) The shear scalar:
22

22
2

)2(

)1(3

tm

nm




  

(iv) The spatial Volume: 
ntV 3   

 
It may be observed that the model starts with big-bang. 

Figure 1. Depicts the variation  
 of the scalar field  with 

time. The scalar field oscillates initially and becomes zero 
at late times. Cosmologies with a power law scale factor 
are widely discussed in the literature (Kumar, 2012). The 
success of the power law model lies with the fact that 
models with m ≥ 1 do not encounter the horizon problem 
and do not witness the flatness problem. From the 
analysis of observational constraints from H (z) and SNIa 
data, Kumar (2012) has shown that a power law 
cosmology is viable in the description of the acceleration 
of the present day universe even though it fails to 
produce primordial nucle synthesis. Now using Equation 
(24) in (10) and (12) with the help of (23), we obtain the 
pressure of holographic energy  
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The behaviour of holographic pressure with reference to 
cosmic time is shown in the following figure. From Figure 
(2), the holographic pressure takes negative values at 
early times and vanishes at late times. Using Equation 
(24) in (15) we get the energy density of dark matter as 
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Now using Equations (26), (24) and (23) in Equation (17), 
we obtain energy density of holographic dark energy  as  
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Figure 1. Plot of scalar field φ vs. time t for m=3, n=4, η=0.003. 

 
 

 
 

Figure 2. Plot of holographic pressure vs. time for m=3, n=2, η=0.002.
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Figure 3 shows the flight of holographic density which 
starts       at    high   value    initially     and   suddenly   
drops. As    time increase, the     holographic       density 
reduces to   a      small      value     and          becomes 
zero. Using       Equation (14),       (21)      and      (23), 
The             EOS      parameter     of      holographic     
dark                          energy           is       given              by  
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Which shows that  is a function of cosmic time. From 

Figure 4, the equation of state parameter  takes on 

negative values in the range 4.01   . Therefore, 

dark energy density transits from vacuum era to 
quintessence era in Barber‘s second self creation theory. 
At the early stage EoS parameter in Barber‘s second self 
creation theory mimic vacuum era, this is  mathematically  
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Figure 3. Plot of holographic density vs. time for m=3, n=2, η=0.002. 

 
 

           

Figure 4.  The plot of EOS parameter ω vs. time t for m=3, n=4, η=0.002, The plot of EOS parameter ω vs. time t for m=2, n=3, 
η=0.002. 

 
 
 
equivalent to the cosmological constant. This class of 

value of EoS parameter is called quintessence
3

1
  , 

which is a necessary condition to accelerate the universe 
(Sahni et al., 2003). In the KS model, the EoS parameter 

of dark energy transits from quintessence 1
3

1



   

era toward vacuum era 1 . From this figure we 

observe that the dark energy model, for   n=2, 3, 4 and 
m=3, evolves from the matter dominated era to 
quintessence era for n=0.1, 0.15, 0.2 and m=3 and 
ultimately approaches to cosmological constant era. The 
coincident               parameter     is             given        by 
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The matter density parameter m  and holographic dark 

energy density parameter h  are given by 
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Using   Equations  (25), (26)   and (30)  we get the overall 
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Deceleration parameter 
2Ha

a
q


 and jerk parameter 

2aH

a
j


  are considered as important quantities in the 

description of the dynamics of universe. The 
observational constraints as set upon these parameters 
in the present epoch from type Ia supernova and X-ray 
cluster gas mass fraction measurements  are  

14.081.00 q  and  
81.0

76.00 16.2 j .  

In a recent work, the deceleration parameter is 
constrained from H(z) and SN Ia data to be q = −0.34 ± 
0.05 (Kumar, 2012). Experimentally it is challenging to 
measure the deceleration parameter and jerk parameter 

and one needs to observe objects of red shift 1z . In an 
attempt to investigate the accelerated expansion of the 
universe, the sign and behaviour of these parameters 
have been considered in different manners in different 
works. The time variation of the deceleration parameter is 
under debate even though, in certain models, a time 
varying q leads to a cosmic transit from early deceleration 
to late time acceleration (Yadav and Sharma, 2013; 
Adhav, 2011; Akarsu and Dereli, 2012; Pradhan et al., 
2011). However, at a late of time of cosmic expansion, 
the deceleration parameter is believed to vary slowly with 
time or to become a constant. A constant deceleration 
parameter leads to two different volumetric expansions of 
the universe, namely the power law expansion and 
exponential expansion.  
In a model with exponential expansion, the radius scale 
factor increases exponentially with time, leading to a 
constant Hubble rate. In a model with power law 
expansion of the volume scale factor, the scale factor can 
be expressed as a cosmic time raised to some positive 
power. The Hubble parameter for such a power law 
model behaves reciprocally to the cosmic time. In the 
present work, we are interested in models describing a 
late time universe with the predicted cosmic acceleration 
and therefore we will consider the power law expansion 
of the scale factor corresponding to a constant and 
variable (decaying) mean Hubble rate, that is, H =H0 

and
t

n
H  , where H0 and n are positive constants. It is 

worth to mention here that   the   choice    of   a   constant  

J. Phys. Sci. Environ. Stud.          74 
 
 
 
 
deceleration parameter cannot provide a time dependent 
cosmic transition from a deceleration phase in the past to 
an accelerated phase at late times. The deceleration 

parameter for this model is 1
1


n
q . In order to be in 

the safe zone for accelerated expansion, the predicted 
deceleration parameter should be negative and that can 
be achieved only if n > 1. In terms of the deceleration 
parameter, the parameter m can be expressed as 

q
n




1

1
. Considering the observational constraints 

from (Rapetti et al., 2007), we put the constraints on n to 
be 3.03 ≤ n ≤ 20. Corresponding to the constraints from 
(Kumar, 2012) n can be constrained in the range 1.4085 
≤ n ≤ 1.6393. The jerk parameter is calculated to be 

2

)2)(1(

n

nn
j


 and can be constrained in the range 

0.69 ≤ j ≤ 17.1 (Rapetti et al., 2007), and −0.1716 ≤ j ≤ 
−0.1407 (Kumar, 2012). It is worth to mention here that 
the exact determination of the jerk parameter involves the 
observation of high-z supernovae, which is a tough task. 
Therefore, current observational data have not yet been 
able to identify the range or sign of the jerk parameter. 
 

                                        
Conclusion 
 
In the present work, we have investigated the Kantowski-
Sachs model in Barber‘s second self-creation cosmology 
with holographic dark energy. The shear scalar is 
considered to be proportional to the scalar expansion, 
which simulates a linear relationship among the 
directional Hubble rates incorporating anisotropy in 
expansion rates along different spatial directions. It is 
observed that the model possess a singularity at m = -2. 
It is further noted that the scalar field shows oscillating 
behaviour at early time and becomes zero as time 

approaches to infinity. Since 1
1


n
q , the model 

acceleration/deceleration depend on the value of the 
constant n. The anisotropic nature of the model does not 
affect the behaviour of the scalar field. It is found that 

if 0 , the Barbers self-creation theory tends to 

general theory of relativity in all respects. The 
expressions for the EoS parameter, deceleration 
parameter and fraction parameter of dark energy are 
obtained for two mentioned cutoffs and found that 
phantom crossing is possible in both the cutoffs by tuning 
the free parameters of the model. Note that in almost 
every cosmological model the fine tuning of parameters is 
necessary and our model also is no exception. Models 
considered in this paper are of considerable interest and 
may be useful in self-creation cosmology  to   study   the  



 
 
 
 
 
large-scale dynamics of the physical universe. 
 
 
REFERENCES 

  
Adhav KS (2012). LRS Bianchi type-I cosmological model with linearly 

varying deceleration parameter.Eur. Phys. J. Plus 126:122 (2011) 
Akarsu O, Dereli T (2012). Cosmological models with linearly vary in 

deceleration parameter. Int. J. Theor. Phys. 51: 612. 
Akarsu O, Kilinc CB  (2010). LRS Bianchi type I models with anisotropic 

dark energy and constant deceleration parameter. General Relativity 
and Gravitation. 42:119-140. Kumar S (2012). Observational 
constraints on Hubble constant and deceleration parameter in power-
law cosmology. Mon. Not. R. Astron. Soc. 422: 2532. 

Armendariz-Picon C, Mukhanov V, Steinhardt P(2001). Essentials of k-
essence J. Phys. Rev. D 63:103510. 

Barber GA (1982). On two ―self-creation‖ cosmologies,‖ General 
Relativity and Gravitation.14(2): 117-136.  

Bekenstein JD (1973). Black Holes and Entropy. Phys. Rev. D 7: 2333. 
Bousso R (1999). A Covariant Entropy Conjecture. J.High Energy 

Phys.7:4. 
Brans C (1987).Consistency of field equations in ―self-creation‖ 

cosmologies. General Relativity and Gravitation.19(9): 949-952.  
Brans H, Dicke, R H (1961).Mach‘s Principle and a Relativistic Theory 

of Gravitation. Phy. Rev. 124(3): 925-935.  
Caldwell RR, Dave R, Steinhardt  PJ (2002). A phantom menace 

Cosmological consequences of a dark energy component with super-
negative equation of state.        Phys. Lett. B. 545 (1-2) :23-29. 

Carroll SM (year).Can the Dark Energy Equation-of-State Parameter w 
be Less than -1.  Phys. Rev. D. 68 : 023509-023538. 

Cohen A (1999). Effective Field Theory, Black Holes, and the 
Cosmological Constant. Phys. Rev. Lett. 82: 497. 

Copeland EJ, Sami M,  Tsujikawa  S (2006). Dynamics of darkenergy. 
Int. J. Modern Phys. 15(11) : 1753–1935. 

Elizalde E, Nojiri S, Odintsov  SD (2004). Late-time cosmology in a 
(phantom) scalar-tensor theory: Dark energy and the cosmic speed-
up.Phys. Rev. D 70: 043539. 

Ghanshyam SR (2010). Five dimensional perfect fluid cosmological 
models in barber's second self-creation theory. Adv. Stud. Theor. 
Phys. 4. p.213  

Gitumani S (2014). Holographic Dark Energy in LRS Bianchi Type-II 
Space Time‖,International Journal of Mathematics And Statistics 
Invention 2:38. 

Granda LN (2008). Infrared cut-off proposal for the holographic density. 
Phys. Lett. B 669: 275. 

Hooft G (1993). Dimensional reduction in quantum gravity. World 
Scientific Series in 20th Century Physics, vol. 4, ed. A. Ali, J. Ellis and 
S. Randjbar-Daemi (World Scientific, 1993), THU-93/26, gr-
qc/9310026. 

Karami, K., Fehri (2010). New holographic scalar field models of dark 
energy in non-flat universe. J. Phys. Lett. B. 684: 61. 

Li  M (2004). A model of holographic dark energy. J.Phys. Lett. B 603:1. 
Mathew TK, Suresh J, Divakaran, D (2013).Modified holographic Ricci 

dark energy model and state finder diagnosis in flat universe.  Int. J. 
Mod. Phys. D 22:1350056.  

Mohanty G, Mishra B, Biswal AK (2002). Cosmological Models in 
Barber's Second Self-Creation Theory. Czech. J. Phys. 52:1289. 

Mohanty G, Sahu RC (2006). Inhomogeneous ―Mesonic Perfect Fluid 
Models in Modified Theory of General Relativity.Astrophys. Space 
Sci. 306:179. 

Padmanabhan T (2002). Accelerated expansion of the universe driven 
by tachyonic matter.Phys. Rev. D 66: 021301. 

Panigrahi  UK, Sahu RC( 2004). Plane Symmetric Cosmological Macro 
Models in Self-creation Theory of Gravitation. Czech. J. Phys. 54: 
543. 

Pradhan A, Amirhashchi H,  Saha  B (2011). Bianchi Type I Anisotropic 
Dark Energy Models with Constant Deceleration Parameter). Int. J. 
Theor. Phys. 50:2923.  

Venkateswarlu and Satish           75 
 
 
 
 
Rapetti D, Allen SW, Amin MA, Blandford RD (2007). A kinematical 

approach to dark energy studies. Mon. Not. R. Astron.Soc. 375:1510.  
Reddy DRK (1987). Bianchi type-I vacuum model in self-creation 

cosmology. Astrophys. Space Sci.132(2) :401-403. 
 Sahni V , Saini TD, Starobinsky AA, Alam U (2003). State finder—a 

new geometrical diagnostic of dark energy.J. Exp. Theor. Phys. Lett. 
77: 201-206. 

Samanta GC (2013). Holographic dark energy cosmological models 
with quintessence in Bianchi type-V space time. Int.J.Theor.Phys.52: 
4389.  

Sarkar S, Mahanta CR (2013). Holographic Dark Energy Model with 
Quintessence in Bianchi Type-I Space-Tim. Int.J.Theor.Phys.52: 
i482. 

Sheykhi A, Jamil M (2011). Interacting HDE and NADE in Brans–Dicke 
chameleon cosmology. Phys. Lett. B 694: 284 

Soleng HH (1987). Cosmic shear in inflationary models of Bianchi types 
VIII and IX. Astrophys. Space Sci.137:373-384. 

Soleng HH (1987). Self-creation cosmological solutions. Astrophysics 
and Space Sci.139:13-19. 

Susskind L (1994). The World as a Hologram. J. Math. Phys. (NY) 36: 
6377 

Venkateswarlu R, Kumar KP (2006). Higher Dimensional FRW 
Cosmological Models in Self-Creation Theory. Astrophys. Space Sci. 
301 : 73-77. 

Venkateswarlu R, Rao VUM, Kumar KP (2008). String cosmological 
solutions in self-creation theory of gravitation. Int. J. Theor. 
Phys.p.640. 

Weinberg  S (1989). The cosmological constant problem. Rev. Mod. 
Phys 61.p.1. 

Yadav AK, Sharma A (2013). A transitioning universe with time varying 
G and decaying Λ. Res. Astron. Astrophys. 13:501 

Yang  RJ, Zhang SN (2010).The age problem in the ΛCDM model .Mon. 
Not. R. Astron. Soc. 407:1835. 

http://link.springer.com/article/10.1140/epjp/i2011-11122-9
http://link.springer.com/article/10.1140/epjp/i2011-11122-9
http://link.springer.com/article/10.1007/s10773-011-0941-5
http://link.springer.com/article/10.1007/s10773-011-0941-5
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.63.103510
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.63.103510
http://www.m-hikari.com/astp/astp2010/astp5-8-2010/rathoreASTP5-8-2010.pdf
http://www.m-hikari.com/astp/astp2010/astp5-8-2010/rathoreASTP5-8-2010.pdf
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=FGfHWuwAAAAJ&citation_for_view=FGfHWuwAAAAJ:ZuybSZzF8UAC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=3O0y37kAAAAJ&citation_for_view=3O0y37kAAAAJ:u5HHmVD_uO8C
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=3O0y37kAAAAJ&citation_for_view=3O0y37kAAAAJ:u5HHmVD_uO8C
http://www.worldscientific.com/doi/abs/10.1142/S0218271813500569
http://www.worldscientific.com/doi/abs/10.1142/S0218271813500569
http://link.springer.com/article/10.1023/A%3A1021854925919
http://link.springer.com/article/10.1023/A%3A1021854925919
http://link.springer.com/article/10.1007/s10509-006-9042-y
http://link.springer.com/article/10.1007/s10509-006-9042-y
http://link.springer.com/article/10.1023/B%3ACJOP.0000024957.99564.97
http://link.springer.com/article/10.1023/B%3ACJOP.0000024957.99564.97
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=U8uOLIoAAAAJ&citation_for_view=U8uOLIoAAAAJ:Se3iqnhoufwC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=U8uOLIoAAAAJ&citation_for_view=U8uOLIoAAAAJ:Se3iqnhoufwC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=k_c5Yt0AAAAJ&citation_for_view=k_c5Yt0AAAAJ:qjMakFHDy7sC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=k_c5Yt0AAAAJ&citation_for_view=k_c5Yt0AAAAJ:qjMakFHDy7sC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=YhOcEmgAAAAJ&citation_for_view=YhOcEmgAAAAJ:j3f4tGmQtD8C
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=YhOcEmgAAAAJ&citation_for_view=YhOcEmgAAAAJ:j3f4tGmQtD8C
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2010.17020.x/abstract

