

# Blood Profiles, Intestinal Morphometric and Ceaca Micro Flora of Broiler Chickens Fed with Urea Molasses Treated Maize Cob

Olayemi W.A.<sup>1\*</sup>, Alade A. A.<sup>3</sup>, Williams G.A.<sup>2</sup> and Obadare O.O.<sup>1</sup>

Accepted 4 May, 2020

<sup>1</sup>Department of Agricultural Technology, Yaba College of Technology, Yaba, Lagos, Nigeria.

<sup>2</sup>School of Agriculture, Lagos State University Epe Campus Lagos, Nigeria.

<sup>3</sup>Africa Centre of Excellence in Agricultural Development and Sustainable Environment, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.

## ABSTRACT

A 56-day study was conducted to evaluate the effects of urea-molasses treated maize cobs (UMTMC) on blood profile, intestinal morphometric and gut microflora status of broiler chickens. Five experimental diets were formulated consisting of UMTMC at 0, 25, 50, 75 and 100% as replacement for wheat offal at starter and finisher phases. 250-day old unsexed broiler (Cobb) chickens were allotted to five dietary treatments of fifty broiler chicks per treatment and replicated five times with ten chicks per replicate in a completely randomized design. The results showed that UMTMC contained 90.17% dry matter (DM), 11.06% crude protein (CP), 2.17% ether extract (EE), 3.44% crude fiber (CF) while ash and carbohydrate are 2.64% and 71.31% respectively. Moreover, the replacement of wheat offal with UMTMC up to 50% significantly ( $P<0.05$ ) increased the hemoglobin, red blood cells and white blood cells. Broiler birds fed 25% UMTMC based diet significantly ( $P<0.05$ ) increased total protein, globulin, creatinine, and cholesterol while 100% UMTMC had highest ( $P<0.05$ ) values of albumin and uric acid. The gut microflora of the broiler chickens fed 50% UMTMC had reduced ( $P<0.05$ ) values of total bacteria count, lactobacillus, staphylococcus, salmonella and coliform counts. The dietary treatments significantly ( $P<0.05$ ) increased the villus height, crypt depth and lamina propria of duodenum, ileum and jejunum segments. The study confirmed that 50% UMTMC can replace wheat offal as a fiber source in the diets of broiler chickens without any compromise in blood profiles, caeca micro flora and gut morphology.

**Keywords:** Broiler, urea-molasses, maize cob, blood profiles, gut morphometric, caeca micro flora

\* Corresponding author. Email: [w\\_olayemi@yahoo.co.uk](mailto:w_olayemi@yahoo.co.uk), +2348023671812

## INTRODUCTION

There are efforts to use maize cobs as animal feedstuff because of the high competing demands with humans for the grain. Estimates of 180 to 200 kg of maize cobs produced per ton of grains (Božović *et al.*, 2004) translate to significant quantities of maize cobs available as feed resource. Maize is a staple grain in sub-Saharan Africa and South Africa produced approximately 2.4 million tons of maize cobs during the 2009 through 2010 season while the other major maize producers in sub-Saharan Africa; Nigeria, Tanzania and

Malawi produced approximately 1.5, 0.9, and 0.7 million tons, respectively (FAO, 2012). The use of crop residues and agro-industrial by-products as feed resources is predominant with ruminant animals due to their fibrous nature. Among crop residues; maize stover is known for its low protein, low digestibility and high fiber or lignin content (Girma and Arthur, 2009). Its crude protein and neutral detergent fiber contents range from 2.5 - 6.3% and 73.8 - 89.1%, respectively (Smith *et al.*, 1989, Lopez *et al.*, 2005) with about 60 g CP per kg

dry matter and metabolisable energy value of about 9 ME MJ/kg dry matter (Hirut *et al.*, 2011), as the crude protein content is below the threshold coupled with fiber contents which limits the feed intake thus rendering the feed to be categorized as a low quality. As characterized by a close intertwining of cellulose (45% to 55%), hemicellulose (25% to 35%), and lignin (20% to 30%) (Deutschmann and Dekker, 2012; Menon and Rao, 2012). Increasing maize cobs' incorporation in diets will have a direct bearing on gut fill and overall digestion of diets. Enhancing the nutritive value of poor-quality feed resources is a major part of feeding management practices. Among the technologies available to improve the nutritive value of low quality crop residues; Urea-ammonia treatment of crop residues has been reported to improve digestibility, milk yield, weight gain and feed efficiency (Djibrillou *et al.*, 1998) while molasses increases palatability of diet and readily available source of energy (Sheikh *et al.*, 2007). In nutritional studies, examination of blood gives the opportunity to investigate the presence of several metabolites and other constituents and this plays a vital role in the physiological, nutrition and pathological status of an organism (Aderemi, 2004; Doyle, 2006). The gut is responsible for the digestion and absorption of nutrients from the diet. Any changes in its function affect the function of other organs and systems in the organism (Tona *et al.*, 2015). Studies have shown that diets improve intestinal morphophysiology (Eyng *et al.*, 2014; Fazayeli-Rad *et al.*, 2014 and Chegini *et al.*, 2018). Likewise, diets can influence intestinal micro flora and in turn improve the gastrointestinal environment of the host, thus having a positive impacts on colonized beneficial bacterial and growth performance (Jeong and Kim, 2014; Valeriano *et al.*, 2017). The objective of the present study was to evaluate the effect of urea-molasses treated maize cob on blood profile, intestinal morphometric and gut micro flora status of broiler chickens.

## MATERIALS AND METHODS

### Experimental Site

The experiment was carried out at the Teaching and Research Farm of the Agricultural Technology Department, Yaba College of Technology, Epe, Lagos state. The farm is located on 3° 58' E and longitude 6° 47'N (Google Earth 2019).

### Preparation of Test Material (UMTMC)

Maize cobs were collected from corn starch processing industry, sun dried and milled using 2 mm size sieve and stored in air tight bags. 2kg of urea were dissolved in 100 litres of water and mixed with 10kg of molasses.

This mixture was sprayed on 100kg of milled maize cob and sun dried according to Reddy (2001).

### Experimental Animals and Management

Two hundred and fifty day old unsexed broiler (Cobb) chickens were obtained from a reputable commercial hatchery. The broilers were allotted to five dietary treatments of fifty broiler chicks per treatment and replicated five times with ten chicks per replicate in a completely randomized design (CRD). The brooding was done in a rearing cage system with nipple drinkers and feeding troughs. Feed and water were offered *ad libitum* for 8 weeks of the feeding trial.

### Experimental diets

Five experimental diets (Table 1 and 2) were formulated consisting of a maize cob free diet (Control) and the other diets with inclusion of the treated maize cob at 25, 50, 75 and 100% as a replacement for wheat offal. Diets were formulated to meet the NRC (1994) requirements for broiler chickens.

### Data Collection

#### Determination of proximate composition of the urea molasses treated maize cob

Dry matter and crude protein (CP) ( $N \times 6.25$ ) of the treated and untreated maize cob samples were analyzed according to the methods of the Association of Official Analytical Chemists International (AOAC, 2000). Crude fat was determined by extraction with petroleum ether following acidification with 4 M hydrochloric acid as described by Wiseman *et al.* (1992).

#### Hematological Indices

At 56<sup>th</sup> day 2.5ml blood was collected from 10 birds per treatment into vials containing ethylene diamine tetra-acetic acid (EDTA) as anticoagulant and used to determine the following: packed cell volume (PCV), red blood cell count (RBC), hemoglobin concentration (Hb), total white blood cell count (WBC) and differential counts to determine Neutrophil, Basophil and Eosinophil using standard techniques (Schalms *et al.*, 1975; Coles, 1986).

#### Serum metabolites

2.5ml blood was collected from 10 birds per treatment into vials without anticoagulants and were allowed to clot. The total serum protein was determined according to the method of Colowick and Kaplan (1955), while serum albumin and globulin was determined using bromocresol purple method of Varley *et al.* (1980).

**Table 1:** Gross composition of experimental diet (Broiler starter 0-4 weeks)..

| Ingredients             | 0%    | 25%   | 50%   | 75%   | 100%  |
|-------------------------|-------|-------|-------|-------|-------|
| Maize                   | 54.00 | 54.00 | 54.00 | 54.00 | 54.00 |
| Soy bean meal           | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 |
| Vegetable oil           | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  |
| Wheat offal             | 6.00  | 4.50  | 3.00  | 1.50  | 0.00  |
| Maize cob               | 0.00  | 1.50  | 3.00  | 4.50  | 6.00  |
| Fishmeal                | 3.00  | 3.00  | 3.00  | 3.00  | 3.00  |
| Bone meal               | 3.00  | 3.00  | 3.00  | 3.00  | 3.00  |
| Limestone               | 2.00  | 2.00  | 2.00  | 2.00  | 2.00  |
| Salt                    | 0.25  | 0.25  | 0.25  | 0.25  | 0.25  |
| Premix                  | 0.30  | 0.30  | 0.30  | 0.30  | 0.30  |
| Methionine              | 0.20  | 0.20  | 0.20  | 0.20  | 0.20  |
| Lysine                  | 0.25  | 0.25  | 0.25  | 0.25  | 0.25  |
| Total                   | 100   | 100   | 100   | 100   | 100   |
| Determined analysis (%) |       |       |       |       |       |
| Crude protein           | 22.43 | 21.68 | 21.58 | 21.50 | 21.42 |
| Crude fibre             | 2.05  | 3.95  | 3.85  | 3.76  | 3.66  |
| Ether extract           | 3.85  | 3.68  | 3.63  | 3.59  | 3.54  |
| Ash                     | 3.47  | 3.78  | 4.11  | 4.17  | 3.25  |
| Calculated analysis (%) |       |       |       |       |       |
| Calcium                 | 1.78  | 1.78  | 1.78  | 1.78  | 1.78  |
| Phosphorus              | 0.46  | 0.46  | 0.46  | 0.46  | 0.46  |
| Lysine                  | 1.49  | 1.49  | 1.49  | 1.49  | 1.49  |
| Methionine              | 0.56  | 0.56  | 0.56  | 0.56  | 0.56  |
| ME (Kcal/kg)            | 2838  | 2838  | 2838  | 2838  | 2838  |

Starter Premix: Vit. A 10,000,000 (iu), Vit D3, 2,000,000 (iv), Vit. 23,000(mg), Vit.k3 (mg), Vit. B1, 1800 (mg), Vit. B2 5,500 (mg), Niacin 27, 500mg, Pantothenic acid 750mg Vit B6 3,000mg, Vit B12 15mg, folic acid 750mg, biotin H2 60mg, chlorine chloride 300,000 mg, Cobalt 200mg, Copper 300mg, Iodine 1000mg, Iron 20,000mg, Manganese 40,000 (mg), Selenium 200mg, Zinc 30,000mg, Anti-oxidant 1,250mg.

Serum creatinine was determined using the principle of Jaffe reaction as described by Bosnes and Toussay (1945) while the serum uric acid was determined by the kit (Quinica Clinica Spam) (Wooton, 1964). Serum glucose was determined colorimetrically using the method described by Braham and Trinder (1972). Serum cholesterol was determined by enzymatic end point method as described by Roeschlau *et al.* (1974) while serum enzyme activity (ALT and AST) was determined using the colorimetric method.

### Gut Morphometric

About 2 cm of different segments of the intestinal samples (mid-region of the intestinal segments: duodenum from gizzard outlet to the end of the pancreatic loop, jejunum (from the pancreatic loop to Meckel's diverticulum), and ileum from Meckel's diverticulum to the cecal junction) of 2 broilers per replicate were collected and fixed in 10% formalin for one week. The specimens were dehydrated in graded levels of alcohol (70%-100%) in ascending order to remove the water content. After the dehydration, the specimens were cleared in xylene, impregnated with

paraffin wax blocked and sectioned at 5 microns thickness using Rotary Microtome (Leica). The sections were floated on a paraffin water bath maintained at a temperature of 2 -3 °C below melting point of the paraffin wax after which the sections from each segment were dried on a slide dryer to obtain 4µm thick paraffin sections and were stained with hematoxylin and eosin (H&E). The slide was placed on the stage of the microscope, with aid of the eyepieces graticules on the microscope the average measurement of following; villus height, apical width, basal width and lamina propria depth were taken. The villi length was measured from the tip to the villi base, and the crypt depth was measured from the base of the villi to the base of the crypt (Jamroz *et al.*, 2006).

### Ceca microflora

The cecal contents of birds selected were carefully emptied into a sterilized bottle and stored in a refrigerator at -20°C for microbiological analysis. The frozen cecal contents were thawed and removed from storage bottles following standard procedures (Mountzouris *et al.*, 2007). Cecal digesta contents were

**Table 2:** Gross composition of experimental diet (Broiler finisher 5-8 weeks).

| Ingredients             | 0%    | 25%   | 50%   | 75%   | 100%  |
|-------------------------|-------|-------|-------|-------|-------|
| Maize                   | 58.00 | 58.00 | 58.00 | 58.00 | 58.00 |
| Soy bean meal           | 25.00 | 25.00 | 25.00 | 25.00 | 25.00 |
| Vegetable oil           | 2.00  | 2.00  | 2.00  | 2.00  | 2.00  |
| Wheat offal             | 7.00  | 5.25  | 3.50  | 1.75  | 0.00  |
| Maize cob               | 0.00  | 1.75  | 3.50  | 5.25  | 7.00  |
| Fishmeal                | 2.00  | 2.00  | 2.00  | 2.00  | 2.00  |
| Bone meal               | 2.00  | 2.00  | 2.00  | 2.00  | 2.00  |
| Limestone               | 3.00  | 3.00  | 3.00  | 3.00  | 3.00  |
| Salt                    | 0.30  | 0.30  | 0.30  | 0.30  | 0.30  |
| Premix                  | 0.30  | 0.30  | 0.30  | 0.30  | 0.30  |
| Methionine              | 0.20  | 0.20  | 0.20  | 0.20  | 0.20  |
| Lysine                  | 0.20  | 0.20  | 0.20  | 0.20  | 0.20  |
| Total                   | 100   | 100   | 100   | 100   | 100   |
| Determined analysis (%) |       |       |       |       |       |
| Crude protein           | 20.33 | 19.62 | 19.21 | 19.11 | 19.01 |
| Crude fibre             | 4.08  | 3.79  | 3.67  | 3.56  | 3.45  |
| Ether extract           | 3.91  | 3.62  | 3.57  | 3.52  | 3.68  |
| Ash                     | 3.04  | 2.97  | 2.91  | 2.85  | 2.75  |
| Calculated analysis (%) |       |       |       |       |       |
| Calcium                 | 1.77  | 1.77  | 1.77  | 1.77  | 1.77  |
| Phosphorus              | 0.44  | 0.44  | 0.44  | 0.44  | 0.44  |
| Lysine                  | 1.31  | 1.31  | 1.31  | 1.31  | 1.31  |
| Methionine              | 0.54  | 0.54  | 0.54  | 0.54  | 0.54  |
| ME (Kcal/kg)            | 3100  | 3100  | 3100  | 3100  | 3100  |

Finisher premix-vit. a 5,500,000 (iu), vit d3, 1500,000 (iv), vit. 10,000 (mg), vit.k3 1,500 (mg), vit. b1, 1,600 (mg), vit. b2 24,000 (mg), niacin 20,000mg, pantothenic acid 5,000mg vit b6 1,500mg, vit b12 10mg, folic acid 500mg, biotin h2 750mg, chlorine chloride 175,500 mg, cobalt 200mg, copper 300mg, iodine 1,000mg, iron 20,000mg, manganese 40,000 (mg), selenium 200mg, zinc 30,000mg, anti-oxidant 1,250mg.

then aseptically emptied into new sterile bottles and immediately diluted using a tenfold dilution method till  $10^{-9}$  with sterile ice-cold anoxic phosphate-buffered saline (0.1 M, pH 7.0). Dilutions were subsequently plated on selective agar media in triplicate for the enumeration of Total bacteria, Coliforms, Clostridium, Bacillus, Lactobacillus, Salmonella, Staphylococcus counts using nutrient agar; MacConkey agar, Rogosa agar, Beersens agar, and Azide agar following standard procedures (Tuohy *et al.*, 2002). Plates were then incubated at 39°C for 24 to 72 h aerobically or 48°C to 120 h anaerobically and colonies were counted. Results were expressed as log10 cfu/g cecal content.

### Statistical analysis

Data obtained from the study were subjected to one-way analysis of variance (ANOVA) in a completely randomized design using the GLM procedure of statistical analysis software SAS® version 2000. Significant differences among treatment means were determined using Duncan Multiple Range Test (DMRT) as contained in the SAS® software.

## RESULTS

The proximate composition of urea molasses treated and untreated maize cobs is shown in Table 3. The crude protein and ash content of the corn cob are significantly ( $p<0.05$ ) increased while the carbohydrate was decreased ( $p<0.05$ ) after urea molasses treatment. The results of the hematological parameters of broiler chickens fed diets containing urea molasses treated maize cobs is shown in Table 4. It was observed that hematological parameters were significantly ( $P<0.05$ ) affected by the dietary treatment, while packed cell volume, lymphocytes, eosinophils, and basophil were not affected by the dietary treatment.

The result of serum indices of broiler chickens fed urea molasses treated maize cob is shown in Table 5. It can be seen from the table that the dietary treatments had a significant ( $P<0.05$ ) effect on serum indices of broiler chickens. Total protein value was the highest at 25% replacement (14.60) while the lowest value (7.20) was recorded at 100%, Globulin, albumin, and creatinine values followed same trend.

Effect of urea molasses treated maize cobs based diets

**Table 3:** Proximate composition of treated and untreated maize cob.

| Parameters (%) | Untreated          | Treated            | SME  | P-value |
|----------------|--------------------|--------------------|------|---------|
| Dry matter     | 91.1               | 90.17              | 0.37 | 0.24    |
| Crude protein  | 7.7 <sup>b</sup>   | 11.06 <sup>a</sup> | 0.76 | <.0001  |
| Ether extract  | 2.35               | 2.17               | 0.05 | 0.09    |
| Crude fiber    | 3.53               | 3.44               | 0.07 | 0.57    |
| Ash            | 2.07 <sup>b</sup>  | 2.64 <sup>a</sup>  | 0.13 | 0.00    |
| CHO            | 75.36 <sup>a</sup> | 71.31 <sup>b</sup> | 0.04 | 0.02    |

Means on the same row with different superscript are significantly different (p<0.05)

**Table 4:** Hematological parameters of broiler chicken fed urea molasses treated maize cobs.

| Parameters                          | 0%                  | 25%                | 50%                 | 75%                 | 100%               | SEM  | P value |
|-------------------------------------|---------------------|--------------------|---------------------|---------------------|--------------------|------|---------|
| Packed cell volume (%)              | 28.00               | 35.00              | 34.0                | 33.00               | 29.00              | 1.10 | 0.16    |
| Hemoglobin (g/dl)                   | 9.40 <sup>c</sup>   | 11.83 <sup>a</sup> | 11.50 <sup>ab</sup> | 11.10 <sup>b</sup>  | 9.70 <sup>c</sup>  | 0.27 | <.0001  |
| Red blood cell x10 <sup>12</sup> /l | 2.06 <sup>d</sup>   | 2.84 <sup>a</sup>  | 2.70 <sup>b</sup>   | 2.34 <sup>c</sup>   | 2.29 <sup>c</sup>  | 0.08 | <.0001  |
| Whiteblood cell Cumm <sup>3</sup>   | 13.100 <sup>d</sup> | 15.10 <sup>a</sup> | 14.03 <sup>b</sup>  | 13.40 <sup>c</sup>  | 11.03 <sup>e</sup> | 0.36 | <.0001  |
| Heterophils (%)                     | 37.00 <sup>b</sup>  | 38.00 <sup>b</sup> | 39.00 <sup>b</sup>  | 40.00 <sup>ab</sup> | 43.33 <sup>a</sup> | 0.76 | 0.05    |
| Lymphocytes (%)                     | 60.00               | 59.00              | 57.00               | 56.00               | 56.00              | 0.75 | 0.34    |
| Eosinophils (%)                     | 3.00                | 2.00               | 4.00                | 3.00                | 3.00               | 0.37 | 0.63    |
| Monocytes (%)                       | 0.00 <sup>b</sup>   | 1.33 <sup>a</sup>  | 0.00 <sup>b</sup>   | 1.33 <sup>a</sup>   | 1.00 <sup>a</sup>  | 0.18 | 0.0013  |
| Basophils (%)                       | 0                   | 0                  | 0                   | 0                   | 0                  | 0    | 0       |

a,b,c,d Mean on the same row having different superscript are significantly (p<0.05) different SEM- Standard error of mean, n = 5

**Table 5:** Serum indices of broiler chickens fed urea molasses treated maize cob.

| Parameters                   | 0%                  | 25%                 | 50%                 | 75%                 | 100%                | SEM  | P-value |
|------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|------|---------|
| Total Protein (g/l)          | 11.80 <sup>c</sup>  | 14.60 <sup>a</sup>  | 13.33 <sup>b</sup>  | 9.60 <sup>b</sup>   | 7.20 <sup>e</sup>   | 0.71 | <.0001  |
| Globulin (g/l)               | 7.40 <sup>c</sup>   | 9.60 <sup>a</sup>   | 8.30 <sup>b</sup>   | 4.70 <sup>d</sup>   | 4.03 <sup>e</sup>   | 0.57 | <.0001  |
| Albumin (g/l)                | 4.40 <sup>b</sup>   | 5.03 <sup>b</sup>   | 5.23 <sup>a</sup>   | 4.30 <sup>b</sup>   | 3.20 <sup>a</sup>   | 0.19 | <.0001  |
| Uric acid (mg/dl)            | 1.43 <sup>b</sup>   | 1.43 <sup>b</sup>   | 0.91 <sup>d</sup>   | 1.17 <sup>c</sup>   | 1.51 <sup>a</sup>   | 0.06 | <.0001  |
| Creatinine (mg/dl)           | 2.03 <sup>bc</sup>  | 2.70 <sup>a</sup>   | 1.70 <sup>cd</sup>  | 1.50 <sup>d</sup>   | 2.30 <sup>ab</sup>  | 0.13 | 0.0010  |
| Glucose (mg/dl)              | 121.90 <sup>a</sup> | 112.23 <sup>c</sup> | 70.40 <sup>e</sup>  | 82.80 <sup>d</sup>  | 120.33 <sup>b</sup> | 5.61 | <.0001  |
| Triglycerol (mg/dl)          | 61.33 <sup>a</sup>  | 58.40 <sup>b</sup>  | 43.16 <sup>e</sup>  | 50.20 <sup>d</sup>  | 57.43 <sup>c</sup>  | 1.76 | <.0001  |
| Cholesterol (g/l)            | 153.40 <sup>b</sup> | 161.70 <sup>a</sup> | 123.23 <sup>e</sup> | 150.43 <sup>c</sup> | 143.76 <sup>d</sup> | 3.47 | <.0001  |
| Alanine transferase (iu/l)   | 215.70 <sup>a</sup> | 174.60 <sup>c</sup> | 144.56 <sup>e</sup> | 153.36 <sup>d</sup> | 205.76 <sup>b</sup> | 7.49 | <.0001  |
| Aspartate transferase (iu/l) | 195.40 <sup>b</sup> | 179.23 <sup>c</sup> | 156.83 <sup>d</sup> | 154.36 <sup>e</sup> | 212.23 <sup>a</sup> | 5.94 | <.0001  |

a, b, c, d: Mean on the same row having different superscripts are significantly (p<0.05) different, SEM- Standard error of mean, n = 5.

on gut micro flora is shown in Table 6. It can be observed that the dietary treatments had significant (P<0.05) effect on the intestinal health of the birds. Total bacteria counts ( $4.30 \times 10^6$ cfu/ml) in birds fed control diet was the highest while least value ( $2.03 \times 10^6$ cfu/ml) was recorded in birds on 25% replacement level. It was observed that inclusion of urea molasses treated maize cobs in the diets encouraged proliferation of beneficial flora. *Staphylococcus*, *Salmonella* and coliform and *Clostridium* values increased with increase

in the level of urea-molasses treated maize cob in the diets.

Effect of dietary inclusion of urea molasses treated maize cobs (UMTMC) on gut morphometric (duodenal, ileum and jejunum) is shown in Table 7. The villus height, crypt depth as well as lamina propria of the different intestinal segments were significantly (P<0.005) affected by the dietary treatments. Villi height and crypt depth values relationship is better at 50% level of urea-molasses treated maize cob inclusion

**Table 6:** Ceaca micro flora of broiler chickens fed urea molasses treated maize cob.

| Parameters ( $\times 10^6$ cfu/ml) | 0%                | 25%               | 50%                | 75%                | 100%              | SEM  | P-value |
|------------------------------------|-------------------|-------------------|--------------------|--------------------|-------------------|------|---------|
| Total bacteria counts              | 4.30 <sup>a</sup> | 2.03 <sup>d</sup> | 2.70 <sup>c</sup>  | 3.50 <sup>b</sup>  | 3.30 <sup>b</sup> | 0.21 | <.0001  |
| Lactobacillus counts               | 0.30 <sup>b</sup> | 1.03 <sup>a</sup> | 0.40 <sup>b</sup>  | 0.30 <sup>b</sup>  | 0.20 <sup>b</sup> | 0.09 | 0.0002  |
| Staphylococcus counts              | 1.03 <sup>a</sup> | 0.60 <sup>b</sup> | 0.50 <sup>b</sup>  | 1.40 <sup>a</sup>  | 1.43 <sup>a</sup> | 0.11 | 0.0009  |
| Salmonella counts                  | 1.03              | 0.20              | 0.40               | 0.50               | 0.30              | 0.08 | <.0001  |
| Coliform counts                    | 1.43 <sup>a</sup> | 0.13 <sup>c</sup> | 0.20 <sup>c</sup>  | 0.30 <sup>bc</sup> | 0.50 <sup>b</sup> | 0.13 | 0.0010  |
| Bacillus counts                    | 0.30 <sup>c</sup> | 0.50 <sup>c</sup> | 0.70 <sup>bc</sup> | 0.80 <sup>b</sup>  | 1.22 <sup>a</sup> | 0.09 | <.0001  |
| Clostridium counts                 | 0.60 <sup>c</sup> | 0.60 <sup>c</sup> | 0.80 <sup>bc</sup> | 1.03 <sup>a</sup>  | 1.20 <sup>a</sup> | 0.07 | 0.0014  |

a,b,c,d Mean on the same row having different superscript are significantly ( $p<0.05$ ) different, SEM- Standard error of mean, n = 5.

**Table 7:** Effect of urea molasses treated maize cob on gut morphometric of broiler chickens.

| Parameters( $\mu\text{m}$ ) | 0%                  | 25%                 | 50%                  | 75%                  | 100%                 | SEM   | P.value |
|-----------------------------|---------------------|---------------------|----------------------|----------------------|----------------------|-------|---------|
| <b>Duodenum</b>             |                     |                     |                      |                      |                      |       |         |
| Villus height               | 700.00 <sup>b</sup> | 750.00 <sup>b</sup> | 1100.67 <sup>a</sup> | 1166.67 <sup>a</sup> | 800.00 <sup>b</sup>  | 53.11 | <.0001  |
| Crypt depth                 | 63.33 <sup>a</sup>  | 50.00 <sup>c</sup>  | 56.67 <sup>b</sup>   | 38.33 <sup>d</sup>   | 40.00 <sup>d</sup>   | 0.95  | 0.0003  |
| Lamina Propria              | 200.00 <sup>b</sup> | 200.00 <sup>b</sup> | 176.67 <sup>b</sup>  | 300.00 <sup>a</sup>  | 200.00 <sup>b</sup>  | 12.03 | <.0001  |
| <b>Ileum</b>                |                     |                     |                      |                      |                      |       |         |
| Villus height               | 700.00 <sup>d</sup> | 800.00 <sup>c</sup> | 1000.00 <sup>b</sup> | 1250.00 <sup>a</sup> | 1000.00 <sup>b</sup> | 51.46 | 0.0001  |
| Crypt depth                 | 70.00 <sup>b</sup>  | 71.99 <sup>b</sup>  | 70.00 <sup>b</sup>   | 40.00 <sup>c</sup>   | 80.00 <sup>a</sup>   | 0.73  | 0.0009  |
| Lamina Propria              | 120.00 <sup>c</sup> | 200.00 <sup>a</sup> | 200.00 <sup>a</sup>  | 200.00 <sup>a</sup>  | 160.00 <sup>b</sup>  | 8.91  | <.0001  |
| <b>Jejunum</b>              |                     |                     |                      |                      |                      |       |         |
| Villus height               | 850.00 <sup>a</sup> | 826.67 <sup>a</sup> | 800.00 <sup>a</sup>  | 600.00 <sup>b</sup>  | 600.00 <sup>b</sup>  | 30.69 | <.0001  |
| Crypt depth                 | 50.00 <sup>c</sup>  | 30.00 <sup>d</sup>  | 73.33 <sup>b</sup>   | 90.00 <sup>a</sup>   | 70.00 <sup>b</sup>   | 4.54  | 0.860   |
| Lamina Propria              | 120.00 <sup>c</sup> | 220.00 <sup>a</sup> | 100.00 <sup>c</sup>  | 200.00 <sup>ab</sup> | 180.00 <sup>b</sup>  | 12.73 | <.0001  |

a,b,c,d Mean on the same row having different superscript are significantly ( $p<0.05$ ) different, SEM- Standard error of mean, n = 5.

in the diets if compared with other treatments.

## DISCUSSION

The nutritional value of the maize cobs increased as a result urea-molasses treatment. This result confirmed the report of (Abera, 2018) that urea-molasses treatment increased the crude protein content of the stover by about 69.5% and also in agreement with previous studies (William *et al.*, 1984; Dias da-Silva *et al.*, 1988; Taiwo *et al.*, 1992; Amaefule *et al.*, 2003) that urea ammunition increases the crude protein content of feed materials. It was observed that the crude protein value obtained with urea –molasses treatment was higher than values reported by (Akinfemi, 2010; Tona *et al.*, 2015) using fungi and rumen fermentation respectively. The fiber value reduced in urea- molasses treatment when compared with results obtained from other studies (Akinfemi, 2010; Tona *et al.*, 2015). The observed differences could be due to the composition of maize cob as it is affected by stage of maturity, cultivar, climate, soils and production method (Szyszkowska *et al.*, 2007) as well as urea dose, moisture content of the

cob, temperature and treatment time which are responsible for the effectiveness of urea treatment (Abera *et al.*, 2018).

Haematological values could serve as baseline information for comparison in conditions of nutrient deficiency, physiology and health status of farm animals (Daramola *et al.*, 2005). Obtained results across the dietary treatments fell within values recommended for normal chickens (Mitruka and Rawnsley, 1977), meaning adequate nutrition and absence adverse response from the test ingredient. As hemoglobin physiological function in transporting oxygen to animal tissues for oxidation of ingested feed to release energy for the other body functions as well as transport carbon dioxide out of the body of animals. The present study agreed with the findings of Bamidele and Adejumo (2012) with PCV and hemoglobin ranges of 18-27.50 and 5.98-9.22 g/dl respectively. The ranges in WBC values could be related to increase in immunological and adaptive capacity at mature age compared to juvenile age (Soetan *et al.*, 2013). The white blood cells have the ability to fight against antibodies (diseases) by the process of phagocytosis. The inclusion of urea-molasses treated maize cobs at varying levels in the

feed had no significant ( $p>0.05$ ) effect on lymphocyte, eosinophils, basophils values. This was contrary to Akpet and Ibekwe (2018) as they observed a significant ( $p<0.05$ ) reduction of lymphocyte and other haematological parameter in broiler chicks fed diets with graded levels of rice offal. However, the values obtained were within the normal range for healthy birds (Mitruka and Rawlsley, 1977; Archetti *et al.*, 2008). Thus, indicating that the immune system of the birds were not compromised by the dietary treatments. The low values of monocytes and basophils agreed with the statement that basophils and monocytes are normally present in small to moderate number in the blood system (Olumide *et al.*, 2018). The urea molasses treated maize cob inclusion has no adverse effects on indices recorded as the result of this study fell within the range of hematological parameters for birds (Blood and Studdert, 1999).

Serum proteins are important in osmotic regulation, immunity and transport of several substances in the animal body (Jain, 1986). The values of serum protein and globulin were significantly influenced by the dietary treatments. This could be as a result of iron, copper and zinc in molasses (Ezihe and Dagih, 2019) which could have possibly elevated the serum protein values. Other study Emilola *et al.*, 2013 recorded improvement in serum protein in broilers birds fed heat treated mucuna beans as indicated by a rise in amino acid absorption and utilization. The increase in values of Alanine aminotransferase (ALT) and Aspartate aminotransferase (AST) might be due to dietary treatments. Ekpeyong and Biobaku (1986) reported that serum AST and ALT under normal circumstances are low, but might become high when the plane of nutrition is low or there is hepatocellular damage. However, values ranged within the normal values reported by Mitruka and Rawnsley (1977), which implied no impairment on heart and liver in the broiler chickens. The uric acid values (0.91 – 1.51 mg/dl) were normal as values obtained fell below values (2.22 – 4.31mg/dl) reported by Marcos *et al.* (2012) which guarantee adequate protein intake, good absorption and better liver functioning. Creatinine values showed significance difference between treatments and values recorded (1.5- 2.30mg/dl) for creatinine in this study were within the normal (0.4 – 1.41mg/dl). This suggests that increase in levels of UMTMC did not likely have deleterious effects on the broiler chickens. Cholesterol and glucose values (123.23-153.40mg/dl and 70.40-121.90 mg/dl obtained were within the normal range (100.72-146.30mg/dl and 234.94-309.12 mg/dl) reported by Marcos *et al.* (2012) except for blood glucose which could be attributed to urea treatment as reported by Ayyat *et al.* (2007) that supplementation of readily available carbohydrates with non-protein nitrogen (NPN) increased the level of blood glucose. The host-micro flora have effect on growth

performance, intestinal morphology as well as nutrient absorption. The composition and function of these communities has been shown to vary depending on the age of the birds, location in the GI tract and on the dietary components (Oakley *et al.*, 2014). In the present study, the population of Lactobacillus ( $0.3-1.03 \times 10^6$ cfu/ml) and that of Bacillus ( $0.3-1.22 \times 10^6$ cfu/ml) were similar to (Cheng-Liang *et al.*, 2019). It has been established that Lactobacillus provides nutrients to the host and defends against opportunistic pathogens (Huang *et al.*, 2018). This reflect in the decreased population of Salmonella, Coliform and Staphylococcus counts in the present study. Cheng-Liang *et al.* (2019) also illustrated that dietary treatment with probiotic can regulate the intestinal bacterial flora by increasing the quantity of beneficial bacterial such as lactobacilli and decreasing the number of harmful bacterial like coliform, salmonella etc.

Morphometric analysis of the duodenal, ileum and jejunal shown a significant effect of the dietary treatment on villi height, crypt depth and Lamina propria of chicken guts. In the present study the average values of the absorptive surface areas of the duodenal villi (height and crypt depth) were comparable to previous studies (Oso *et al.*, 2019; Lovita *et al.*, 2019). The changes in intestinal morphology as a result of urea-molasses treated maize cob in the diet may provide further information on possible benefits to the digestive tract. It was observed that broiler fed 50% UMTMC had similar duodenal villi height with birds on (0%). Increased villi height/crypt depth ratio can be termed increased digestive capacity. Montagne *et al.* (2003) reported that villus height/crypt depth ratio is a useful criterion in estimating digestive capacity of the small intestine. The ratio of villus height and crypt depth (VH: CD) at the ileum significantly increased as the level of urea-molasses treated maize cob increase in the diet which is an indication that the absorptive function in the ileum was higher compared with control treatments. Ghosh *et al.* (2007) reported that villus height differed significantly in Japanese quail due to prebiotics (MOS) supplementation. As observed, reduced growth of pathogenic bacteria reduced intestinal infections thus giving rise to improved villus height and crypt depth as well as digestion and absorption of nutrients.

The trend noticed in the jejunum is vital since majority of absorption fat, starch, and protein are completed in the jejunum. A decreased in jejunum villi height at 75% and 100% suggests a decreased surface area meaning lower absorption of the available nutrients. Studies (Iji *et al.*, 2001; Maneewan and Yamauchi, 2004; De Los Santos *et al.*, 2007) revealed that intestinal villi conformation has been linked with growth performance as this play a great role in nutrient absorption; the longer villus height and higher crypt depth ratio, the greater the epithelial turnover. This may explain the better performance in broilers fed on urea-molasses

treated maize cob ration at 50% inclusion.

## CONCLUSION

In conclusion, the present study confirmed the ability of urea-molasses treated maize cob to replace wheat offal as a fiber source in the diet of broiler chickens at 50% inclusion level without any compromise in blood profiles, caeca micro flora and gut morphology. This could be linked with proximate composition of treated maize cob, urea that increase crude protein level couple with iron, zinc and copper in molasses that boost blood profile as well as the carbohydrate and fiber source which improve the gut health and integrity.

## REFERENCES

Abera F, Urge M, Animut G (2018). Feeding value of maize stover treated with urea or urea molasses for Hararghe highland sheep. *The Open Agric. J.* 12: 84-94.

Aderemi FA (2004). Effects of replacement of wheat bran with cassava root sieveate supplemented or unsupplemented with enzyme on the hematology and serum biochemistry of pullet chicks. *Tropical J. of Animal Sc.* 7: 147-153.

Akinfemi A (2010). Nutritive value and *in vitro* gas production of fungal treated maize cobs. *African J. of Food Agric. and Nutr. Dev.* 10:2943-2955.

Akpet SO, Ibekwe HA (2018). Performance, hematological and serum characteristics of broiler chicks fed diets with graded levels of rice offal. *Inter. J. of Food Sc. and Nutr.* 3 (6):61-67.

Amaefule KU, Nwogu RK, Ohazulike N (2003).Influence of treatment of rice mill waste on its nutritional value for broilers. *J. of Sus. Agric. and Environ.* 5: 196-203.

AOAC Association of Analytical Chemist (2000). Official Methods of Association of Official Analytical Chemist International, 17<sup>th</sup> edition, Washington, D.C. USA.

Archetti I, Tittarelli C, Cerioli M, Brivio R, Grilli G, Lavazza A (2008). Serum chemistry and hematology values in commercial rabbits: preliminary data from industrial farms in Northern Italy. *Proceedings of 9th the World Rabbit Congress*, Italy. Pp. 1147-1151.

Ayyat MS, Abd El-Rahman GA, Faten FM, Ammou A, Hafez YH (2007). Effect of yeast culture supplementation on ewes' performance under Egyptian conditions. *Tagazig J. of Agric. Res.* 34

Bamidele O, Adejumo IO (2012). Effect of garlic (*Allium sativa L.*) and ginger (*Zingiber officinale Roscoe*). Mixtures on performance characteristics and cholesterol profile of growing pullets. *Inter.J. of Poult. Sc.* 11(3): 217- 220.

Blood DC and Studdert VP (1999).Comprehensive Veterinary Dictionary (2nd edition) W.B

Bosnes R, Toussay HH (1945). Colorimetric determination of creatinine by Jaffe reaction. *J. of Biochem.* 158:581-591.

Božović, I., M. Radosavljević, S. Žilić, and R. Jovanović (2004). A genetic base of utilization of maize cob as a valuable naturally renewable raw material. *Genetika* 36:245-256.

Braham D, Trinder P (1972). *Analyst*. 92,142.

cereal and legume straws based on chemical composition and in vitro digestibility. *J. of Sc. Food and Agric.*85: 1550-7.

Chegini S, Kiani A, Rokni H (2018). Alleviation of thermal and overcrowding stress in finishing broilers by dietary propolis supplementation. *Italian J. of Anim. Sc.* 17:377-385.

Cheng-Liang L, Jing W, Hai-jun Z, Shu-geng W, Qian-ru H, Cheng-bo Y, Re-jun F, Guang-hai Q (2019). Intestinal morphologic and microbiota responses to dietary *Bacillus* spp. in a broiler chicken model. *Front. in physiol.* 9:1968.

Coles, EH (1974). Veterinary clinical pathology. 4th ed. E. H. Coles, W. B.Saunders Company, Philadelphia, USA.

Colowick SP, Kaplan NO (1955). Method of enzymology. 2nd edition. New York Academic press, New York. 1:10.

Daramola JO, Adeloye AA, Fatoba TA, Soladoye AO (2005). Hematological and biochemical parameters of West African Dwarf goats. *Livest. Res. for Rural Dev.* 17(8): 95.

De Los Santos FS, Donoghue AM, Farnell MB, Huff GR, Huff WE, Donoghue DJ (2007).Gastrointestinal maturation in turkey pouls supplemented with a mannan- oligosaccharide yeast extract (Alphamune). *Poult. Sc.* 86:921-930.

Deutschmann R, Dekker RFH (2012). From plant biomass to bio-based chemicals: latest developments in xylan research. *Biotech. Adv.* 30:1627-1640.

Dias da-Silva A, Mascarenhas-Ferrira A, Guedes CVM (1988). Effects of moisture level, treatment time and soybean addition of the nutritive value of urea treatment maize stover. *Anim. Feed Sc. Tech.*19, 67- 77.

Djibrillou OA, Pandey VS, Gouro SA and Verhulst A (1998). Effect of urea-molasses on untreated straw with cotton seed performance of lactating maradi (red sokoto) goats in Niger. *Liv. Prod. Sc.*55, 117- 125.

Doyle, D. (2006). William Hewson (1739-74). The father of hematology. *Bri. J. of Haema.* 133(4):375-381.

Ekpeyong TE, Biobaku WO (1986). Growth response of rabbits fed activated sewage and poultry waste. *J. of Appli. Rabbit Res.* 9(1): 14-16.

Emiola IA, Ojediran TK, Ajayi JA (2013). Biochemical and hematological indices of broiler chickens fed differently processed legume seed meals. *Inter. J. of Appli. Agric. and Apic. Res.* 9 (1&2): 140-149.

Eyng C, Murakami AE, Duarte CRA Santos TC (2014). Effect of dietary supplementation with an ethanolic extract of propolis on broiler intestinal morphology and digestive enzyme activity. *J. of Anim. Physiol. and Anim.Nutr.*98:393-401.

Ezihe CO, Dagih AA (2019).Effect of molasses on performance, hematology and serum chemistry of broiler chickens *Sokoto J. of Vet. Sc.* 17(2): 60 -64.

FAO (2012). FAOSTAT Crop production. FAOSTAT, FAO Statistics Division. <http://faostat.fao.org/site/567/desktopdefault.aspx#ancor>. (Accessed December 28, 2012).

Fazayeli-Rad AR, Afzali N, Farhangfar H, Asghari MR (2014). Effect of bee pollen on growth performance, intestinal morphometry and immune status of broiler chicks. *European J. of Poult. Sc.* 79:1-9.

Ghosh HK, Halder G, Samanta G, Paul SK, Pyne K (2007).Effect of dietary supplementation of organic acid and mannan oligosaccharide on the performance and gut health of japanese quail (*Coturnix coturnix japonica*) *Asian J. of Poult. Sc.* 1(1): 1-7.

Girma A, Arthur L (2009). Ethiopia sheep and goat productivity improvement program. [www.esgpip.com/PDF/](http://www.esgpip.com/PDF/) ESGPIP\_Midterm Conference.

Google Earth (2019). <http://www. Google. earth>.

Hirut Y, Solomon M, Mengistu U (2011). Effect of concentrate mix supplementation to urea-treated and ensiled maize stover on feed intake, digestibility and nitrogen balance of Hararghe highland sheep. *East Afri. J. of Sc.* 5 (1): 51-57.

Huang P, Zhang Y, Xiao KP, Jiang F, Wang HC, Tang DZ (2018). The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. *Micobiome* 6:211. doi: 10.1186/s40168-018-0590-5.

Iji PA, Saki A, Tivey DR (2001). Body and intestinal growth of broiler chicks on a commercial starter diet. *Intestinal weight and mucosal development.* *Bri. Poult. Sc.* 42:505-513.

Jain NC (1986). Veterinary Haematology, fourth edition Lea and Febiger, Philadelphia, Pp 1221.

Jamroz D, Wiliczkiewicz A, Wertelecki T, Orda J, Skorupinska J (2005). Use of active substances of plant origin in chicken diets based on maize and locally grown cereals. *Br. Poult. Sci.*46:485- 493.

Jeong JS, Kim IH (2014). Effect of *Bacillus subtilis* C-3102 spores as a probiotic feed supplement on growth performance, noxious gas emission, and intestinal microflora in broilers. *Poult Sc.* 93:

3097–3103. doi: 10.3382/ps.2014-04086.

Lopez S, Davies D, Giraldez F, Dhanoa M, Dijkstra J (2005). Assessment of nutritive value of Lovita A, Diding L, Roostita LB Tuti, W (2019). Improvement of small intestine morphometry in broiler chicken using fermented cow and soymilk as probiotic. *Inter. J. of Poult. Sc.* 18 (6): 233-259.

Maneewan B, Yamauchi K (2004). Intestinal villus recovery in chickens fed semi-purified protein, fat, or fiber-free pellet diets. *Bri. Poult. Sc.* 45:163–170.

Marcos BC, Fabrício PR, Hugo RM, Mara Regina MN, Antônio VM, Cristiane Ferreira PM (2012). Biochemical blood parameters of broilers at different ages under thermoneutral environment. *World's Poult. Sc. J.*, Book of Abst.

Menon V, Rao M (2012). Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. *Progress on Energy Combust. Sc.* 38:522- 550

Mitruka BT, Rawnsley H (1977). *Clinical Biochemical and Haematology Value in Normal Animals*. Mason Publishing, New York, USA. Pp 171-174.

Montagne L, Pluske JR, Hampson DJ (2003). A review of interactions between dietary fiber and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. *Anim. Feed Sc. and Tech.* 108: 95–117.

Mountzouris KC, Tsirtsikos P, Kalamara E, Kalamara E, Nitsch S, Schatzmayr G, Fegeros K (2007). Evaluation of the efficacy of a probiotic containing *Lactobacillus*, *Bifidobacterium*, *Enterococcus* and *pediococcus* strain in promoting broiler performance and modulating cecal microflora composition and metabolic activities. *Poult. Sc.* 86:309-317.

NRC (1994). *Nutrient Requirement of Poultry*. National Academic. Washington D. C. Page 113.

Oakley BB, Lillehoj HS, Kogut MH, Kim WK, Maurer JJ, Pedroso A (2014). The chicken gastrointestinal microbiome. *FEMS. Microbiol. Letter.* 360, 100–112. doi:10.1111/1574-6968.12608.

Olumide MD, Chioma GO, Ajayi OA, Akinboye OE (2018). Performance, haematological and serum biochemical profile of broilers chicken fed diets supplemented with *Ocimum gratissimum* meal. *Inter. J. Mod. Biol. Res.* 6: 27-34.

Oso AO, Suganthi RU, Manjunatha Reddy GB, Malik PK, Thirumalaisamy G, Awachat VB, Selvaraju S, Arangasamy A, Bhatta R (2019). Effect of dietary supplementation with phytogenic blend on growth performance, apparent ileal digestibility of nutrients, intestinal morphology, and cecal microflora of broiler chickens. *Poult. Sc.* 98: 4755-4766.

Reddy DV (2001). Use of urea –molasses to improve nutritive values of straws. In. *Principle of Animal Nutrition and Feed technology*. Vijay Prinlani for Oxford and IBH Publishing Co. New Delhi.

Roeschlau, P, Bernet, E and Grunber, JW (1974). Clinical Chemistry.12:403.

SAS Institute (2000). *SAS/STAT(R) Inc. User's Guide, Version 9*, SAS Institute, Inc. Cary, NC.Saunders, Longer. PP: 497-499.

Schalms, OW, Jain NC and Carol, E (1975). *Veterinary hematology* 3rd Lea and Febiger, Philadelphia, USA.160-210.

Sheikh GG, Ganai AM, Sheikh FA, Shakil AB, Danish M, Shabir M, Ishfaq A, Mudasir AB (2007). Effect of feeding urea molasses treated rice straw along with fibrolytic enzymes on the performance of Corriedale Sheep. *J. of Entomol. and zool. studies* 5(6): 2626-2630.

Smith T, Chakanyuka S, Sibanda Manyuchi, B (1989). Maize stover as a feed for ruminants. Overcoming constraints to the efficient utilization of agricultural by-products as animal feed. *Addis Ababa, Ethiopia: ILCA* 1989; pp. 218-31.

Soetan KO, Akinrinde AS, Ajibade TO (2013). Preliminary studies on the hematological parameters of cockerels fed raw and processed guinea corn (*Sorghum bicolor* Proceedings of 38th Annual Conference of Nigerian Society for Animal Production.49-52.

Szyszkowska A, Sowiński J, Wierzbicki H (2007). Changes in the chemical composition of maize cobs depending on the cultivar, effective temperature sum and farm type. *Acta Scientia. Pol. Agric.* 6:13–22.

Taiwo AA, Adebawale EEA, Greenhalgh JFD, Akinsoyinu AO (1992).Effects of urea treatment on the chemical composition and degradation characteristics of some crop residues. *Nig. J. of Anim. Prod.*19, 25-34.

Tona GO, Ogunbosoye DO, Ayano MO (2015). Nutritive Value Assessment of Four Crop Residues by Proximate Composition and In Vitro Rumen Fermentation Techniques. *Inter. J. of Appli. Agric. and Apic. Res.* 11 (1&2): 123-129.

Tuohy KM, Ziemer CJ, Klinder A, Knobel Y, Pool-Zobel BL, Gibson GR (2002).A human volunteer study to determine the prebiotic effects of lactulose powder on human colonic microbiota. *Microbiol. Ecol. and Health Dis.*14:165–173.

Valeriano VD, Balolong MP, Kang DK (2017). Probiotic roles of *Lactobacillus* spp. in swine: insights from gut microbiota. *J. of Appli. Microbiol.*554–567.

Varley H, Gowlock AH, Bells M (1980). Determination of serum urea using the acetyl monoxide method. *Practical biochemistry*, 5th Edition. Williams Heinemann Medical books Ltd. London.

William PFV, Innes GM, Brewer A. (1984). Ammonia treated straw via the hydrolysis of urea II. Addition of soybean urease, sodium hydroxide and molasses effects on the digestibility of urea treated straw. *Anim. Feed Sc. Tech.*11: 115-124.

Wiseman J, Edmunds BK, Shepperson N (1992). The apparent metabolizable energy of sunflower oil and sunflower acid oil for broiler chickens. *Anim. Feed Sci. Technol.* 36:41-51

Wootton TD (1964). *Micro analysis in Medical Biochemistry* 4th edition Churchill Ltd. London.